Câu hỏi:
16/05/2023 9,314Cho tam giác ABC vuông tại A có AB = 6 cm, AC = 8 cm.
a) Tính số đo góc B, góc C (làm tròn đến độ) và đường cao AH.
b) Chứng minh rằng AB. cos B + AC . cosC = BC.
c) Trên cạnh AC lấy điểm D sao cho DC = 2DA. Vẽ DE vuông góc với BC tại E. Chứng minh rằng \(\frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}} = \frac{4}{{9D{E^2}}}\).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
a) Vì tam giác ABC vuông tại A nên AB2 + AC2 = BC2 (định lí Pytago)
Hay 62 + 82 = BC2, suy ra BC = 10 (cm).
Xét tam giác ABC có \[\sin B = \frac{{AC}}{{BC}} = \frac{8}{{10}} = \frac{4}{5}\], suy ra \(\widehat B \approx 53^\circ \)
Vì tam giác ABC vuông tại A nên \(\widehat B + \widehat C = 90^\circ \) (trong tam giác vuông, tổng hai góc nhọn bằng 90°)
Suy ra \(\widehat C = 90^\circ - \widehat B \approx 90^\circ - 53^\circ = 37^\circ \)
Xét tam giác ABC vuông tại A có đường cao AH
Suy ra AH . BC = AB . AC (hệ thức lượng trong tam giác vuông)
Hay AH . 10 = 6 . 8
Suy ra AH = 4,8 cm.
b) Vì tam giác ABH vuông tại H nên BH = AB . cosB
Vì tam giác ACH vuông tại H nên CH = AC . cosC
Ta có BC = CH + BH = AC . cosC + AB . cosB.
c) Xét tam giác ABC vuông tại A có AH ⊥ BC
Suy ra \(\frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}} = \frac{1}{{A{H^2}}}\) (hệ thức lượng trong tam giác vuông) (1)
Ta có AH ⊥ BC, DE ⊥ BC nên AH // DE (quan hệ từ vuông góc đến song song)
Suy ra \(\frac{{DE}}{{AH}} = \frac{{C{\rm{D}}}}{{AC}} = \frac{2}{3}\) (vì CD = 2AD)
Suy ra \(\frac{{D{E^2}}}{{A{H^2}}} = \frac{4}{9}\)
Do đó \(\frac{1}{{A{H^2}}} = \frac{4}{{9D{E^2}}}\) (2)
Từ (1) và (2) suy ra \(\frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}} = \frac{4}{{9D{E^2}}}\)
Vậy \(\frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}} = \frac{4}{{9D{E^2}}}\).CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC đều cạnh a, tâm O. Hãy tính:
a) \(\overrightarrow {AB} .\overrightarrow {AC} \).
b) \(\overrightarrow {AB} .\overrightarrow {BC} \).
c) \(\left( {\overrightarrow {OB} + \overrightarrow {OC} } \right)\left( {\overrightarrow {AB} - \overrightarrow {AC} } \right)\).
d) \(\left( {\overrightarrow {AB} + 2\overrightarrow {AC} } \right)\left( {\overrightarrow {AB} - 3\overrightarrow {BC} } \right)\).
Câu 2:
Câu 3:
Cho tam giác abc vuông tại A, M là trung điểm của BC, D, E lần lượt là hình chiếu của M trên AB và AC.
a) Tứ giác ADME là hình gì, tại sao?
b) Chứng minh \(DE = \frac{1}{2}BC\)
c) Gọi P là trung điểm của BM, Q là trung điểm của MC, chứng minh tứ giác DPQE là hình bình hành.
Từ đó chứng minh: tâm đối xứng của hình bình hành DPQE nằm trên đoạn AM.
d) Tam giác vuông ABC ban đầu cần thêm điều kiện gì để hình bình hành DPQE là hình chữ nhật?
Câu 4:
Câu 5:
Câu 6:
Cho tam giác ABC đều cạnh a, đường cao AH. Tính độ dài của các vecto:
\(\left| {\overrightarrow {AB} + \overrightarrow {BH} } \right|,\left| {\overrightarrow {AB} - \overrightarrow {AC} } \right|,\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right|\).
về câu hỏi!