Câu hỏi:
16/05/2023 6,321Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Gọi G là trọng tâm tam giác ABC
Khi đó \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} = 3\overrightarrow {MG} \)
Dựng hình bình hành ABCD ta có \(\overrightarrow {BA} = \overrightarrow {C{\rm{D}}} \)
Ta có \(\overrightarrow {MA} - \overrightarrow {MB} + \overrightarrow {MC} = \overrightarrow {BA} + \overrightarrow {MC} = \overrightarrow {C{\rm{D}}} + \overrightarrow {MC} = \overrightarrow {M{\rm{D}}} \)
Khi đó \(T = \left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right| + 3\left| {\overrightarrow {MA} - \overrightarrow {MB} + \overrightarrow {MC} } \right| = 3\overrightarrow {MG} + 3\overrightarrow {M{\rm{D}}} \ge 3\overrightarrow {G{\rm{D}}} \)
(vì G và D nằm khác phía với đường thẳng AC)
Dấu “=” xảy ra khi M là giao điểm của DG và AC
Hay M là trung điểm của AC
Mà ABCD là hình bình hành
Suy ra M là trung điểm của BD
Do đó MB = MD
Vì tam giác ABC đều có BM là trung tuyến
Nên BM là đường cao
Hay tam giác BCM vuông tại M
Suy ra \(BM = \sqrt {B{C^2} - C{M^2}} = \sqrt {{a^2} - {{\left( {\frac{a}{2}} \right)}^2}} = \frac{{a\sqrt 3 }}{2}\)
Suy ra \(DM = \frac{{a\sqrt 3 }}{2}\)
Vì G là trọng tâm của tam giác ABC nên \[GM = \frac{1}{3}BM = \frac{{a\sqrt 3 }}{6}\]
Ta có DG = DM + GM
Hay \[DG = \frac{{a\sqrt 3 }}{2} + \frac{{a\sqrt 3 }}{6} = \frac{{2\sqrt 3 a}}{3}\]
Vậy giá trị nhỏ nhất của T là \(2\sqrt 3 a\) khi M là trung điểm của AC.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC đều cạnh a, tâm O. Hãy tính:
a) \(\overrightarrow {AB} .\overrightarrow {AC} \).
b) \(\overrightarrow {AB} .\overrightarrow {BC} \).
c) \(\left( {\overrightarrow {OB} + \overrightarrow {OC} } \right)\left( {\overrightarrow {AB} - \overrightarrow {AC} } \right)\).
d) \(\left( {\overrightarrow {AB} + 2\overrightarrow {AC} } \right)\left( {\overrightarrow {AB} - 3\overrightarrow {BC} } \right)\).
Câu 2:
Cho tam giác ABC vuông tại A có AB = 6 cm, AC = 8 cm.
a) Tính số đo góc B, góc C (làm tròn đến độ) và đường cao AH.
b) Chứng minh rằng AB. cos B + AC . cosC = BC.
c) Trên cạnh AC lấy điểm D sao cho DC = 2DA. Vẽ DE vuông góc với BC tại E. Chứng minh rằng \(\frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}} = \frac{4}{{9D{E^2}}}\).
Câu 3:
Câu 4:
Cho tam giác abc vuông tại A, M là trung điểm của BC, D, E lần lượt là hình chiếu của M trên AB và AC.
a) Tứ giác ADME là hình gì, tại sao?
b) Chứng minh \(DE = \frac{1}{2}BC\)
c) Gọi P là trung điểm của BM, Q là trung điểm của MC, chứng minh tứ giác DPQE là hình bình hành.
Từ đó chứng minh: tâm đối xứng của hình bình hành DPQE nằm trên đoạn AM.
d) Tam giác vuông ABC ban đầu cần thêm điều kiện gì để hình bình hành DPQE là hình chữ nhật?
Câu 5:
Câu 6:
Cho tam giác ABC đều cạnh a, đường cao AH. Tính độ dài của các vecto:
\(\left| {\overrightarrow {AB} + \overrightarrow {BH} } \right|,\left| {\overrightarrow {AB} - \overrightarrow {AC} } \right|,\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right|\).
về câu hỏi!