Câu hỏi:

13/07/2024 1,022

Cho khối lăng trụ đứng tam giác ABC.A’B’C’ có tất cả các cạnh đều bằng a. Tính thể tích khối tứ diện A’BB’C’?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

Do ABC.A’B’C’ là khối lăng trụ đứng nên BB’ (A’B’C’).

Kẻ A’H’ B’C’.

Khối lăng trụ đứng tam giác ABC.A’B’C’ có tất cả các cạnh đều bằng a.

Suy ra BB’ = A’B’ = B’C’ = a.

Do ∆A’B’C’ đều nên A’H vừa là đường cao, vừa là đường trung tuyến của ∆A’B’C’.

Suy ra \[B'H = \frac{{B'C'}}{2} = \frac{a}{2}\].

∆A’B’H vuông tại H: \(A'H = \sqrt {A'{{B'}^2} - B'H} = \sqrt {{a^2} - \frac{{{a^2}}}{4}} = \frac{{a\sqrt 3 }}{2}\).

Thể tích khối tứ diện A’BB’C’ là:

\(V = \frac{1}{3}BB'.{S_{A'B'C'}} = \frac{1}{3}a.\frac{1}{2}A'H.B'C' = \frac{1}{6}.a.\frac{{a\sqrt 3 }}{2}.a = \frac{{{a^3}\sqrt 3 }}{{12}}\).

Vậy thể tích khối tứ diện A’BB’C’ bằng \(\frac{{{a^3}\sqrt 3 }}{{12}}\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack

1) Ta có \(\widehat {OAM} = 90^\circ \) (do MA là tiếp tuyến của (O), A là tiếp điểm).

Suy ra ba điểm O, A, M cùng thuộc một đường tròn đường kính OM   (1)

Lại có \(\widehat {OBM} = 90^\circ \) (do MB là tiếp tuyến của (O), B là tiếp điểm).

Suy ra ba điểm O, B, M cùng thuộc một đường tròn đường kính OM   (2)

Từ (1), (2), ta được tứ giác AMBO nội tiếp đường tròn đường kính OM.

2) Đường tròn (O) có NP là dây cung.

Mà K là trung điểm của NP (giả thiết).

Suy ra OK NP tại K hay \(\widehat {OKM} = 90^\circ \).

Do đó ba điểm O, K, M cùng thuộc một đường tròn đường kính OM.

Mà từ kết quả câu 1), ta có bốn điểm A, M, B, O cùng thuộc một đường tròn đường kính OM.

Vậy năm điểm O, K, A, M, B cùng nằm trên một đường tròn đường kính OM.

3) Từ kết quả câu 1), ta có tứ giác AMBO nội tiếp đường tròn đường kính OM.

Suy ra AB là dây cung của đường tròn đường kính OM.

Do đó OM AB.

∆OAM vuông tại A có AI là đường cao.

Áp dụng hệ thức lượng trong tam giác vuông, ta có: OA2 = OI.OM và OI.IM = IA2.

OI.OM = R2 và OI.IM = IA2.

Vậy ta có điều phải chứng minh.

4) Ta có OA AM (do AM là tiếp tuyến của (O) và BD MA (giả thiết).

Suy ra OA // BD.

Chứng minh tương tự, ta được OB // AC.

Do đó tứ giác OAHB là hình bình hành.

Mà OA = OB = R.

Vậy tứ giác OAHB là hình thoi.

5) Ta có OH AB (do tứ giác OAHB là hình thoi).

Mà OM AB (theo kết quả câu 3).

Do đó OM ≡ OH.

Vậy ba điểm O, H, M thẳng hàng.

6) Do d là tiếp tuyến của đường tròn (O) nên mọi điểm đều nằm cùng một phía đối với d.

Ta có OAHB là hình thoi (kết quả câu 4).

Suy ra AH = OA = R.

Do đó khi M di động trên d thì H cũng di động nhưng luôn cách A một khoảng cố định bằng R.

Vậy quỹ tích của điểm H khi M di chuyển trên đường thẳng d là nửa đường tròn tâm A, bán kính AH = R.

Câu 2

Cho hình lăng trụ đứng ABC.A’B’C’ có tất cả các cạnh bằng a. Gọi M là trung điểm của CC’. Khoảng cách từ M đến mặt phẳng (A’BC) bằng

Lời giải

Lời giải

Đáp án đúng là: B

Media VietJack

Ta có C = C’M ∩ (A’BC).

Suy ra \(\frac{{d\left( {M,\,\left( {A'BC} \right)} \right)}}{{d\left( {C',\,\left( {A'BC} \right)} \right)}} = \frac{{CM}}{{CC'}} = \frac{1}{2}\) (do M là trung điểm CC’).

Hình lăng trụ đứng ABC.A’B’C’ có tất cả các cạnh bằng a.

Suy ra AA’ (ABC) và AA’ = AB = BC = a.

Ta có \({V_{C'.ABC}} = \frac{1}{3}{V_{ABC.A'B'C'}} = \frac{1}{3}.CC'.{S_{\Delta ABC}} = \frac{1}{3}.a.\frac{1}{2}.AB.AC.\sin \widehat {BAC}\)

\( = \frac{1}{6}.a.a.a.\sin 60^\circ = \frac{{{a^3}\sqrt 3 }}{{12}}\).

∆AA’B vuông tại A: \(A'B = \sqrt {A{{A'}^2} + A{B^2}} = \sqrt {{a^2} + {a^2}} = a\sqrt 2 \).

Chứng minh tương tự, ta được \(A'C = a\sqrt 2 \).

Nửa chu vi ∆A’BC là: \(p = \frac{{A'C + A'B + BC}}{2} = \frac{{a\sqrt 2 + a\sqrt 2 + a}}{2} = \frac{{\left( {2\sqrt 2 + 1} \right)a}}{2}\).

Ta có \({S_{\Delta A'BC}} = \sqrt {p\left( {p - A'C} \right)\left( {p - A'B} \right)\left( {p - BC} \right)} \)

\( = \sqrt {\frac{{\left( {2\sqrt 2 + 1} \right)a}}{2}\left( {\frac{{\left( {2\sqrt 2 + 1} \right)a}}{2} - a\sqrt 2 } \right)\left( {\frac{{\left( {2\sqrt 2 + 1} \right)a}}{2} - a\sqrt 2 } \right)\left( {\frac{{\left( {2\sqrt 2 + 1} \right)a}}{2} - a} \right)} = \frac{{{a^2}\sqrt 7 }}{4}\).

Ta có \(d\left( {C',\left( {A'BC} \right)} \right) = \frac{{3{V_{C'.A'BC}}}}{{{S_{\Delta A'BC}}}} = \frac{{3.\frac{{{a^3}\sqrt 3 }}{{12}}}}{{\frac{{{a^2}\sqrt 7 }}{4}}} = \frac{{a\sqrt {21} }}{7}\).

Vì vậy \(d\left( {M,\,\left( {A'BC} \right)} \right) = \frac{1}{2}d\left( {C',\,\left( {A'BC} \right)} \right) = \frac{1}{2}.\frac{{a\sqrt {21} }}{7} = \frac{{a\sqrt {21} }}{{14}}\).

Vậy ta chọn phương án B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay