Câu hỏi:

16/05/2023 1,647

Cho khối lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác cân với AB = AC = a, \(\widehat {BAC} = 120^\circ \). Mặt phẳng (AB’C’) tạo với đáy một góc 60°. Tính thể tích V của khối lăng trụ đã cho.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Đáp án đúng là: A

Media VietJack

Gọi H là trung điểm của B’C’.

Ta có tam giác A’B’C’ cân tại A (A’B’ = A’C’ = a).

Suy ra A’H vừa là đường trung tuyến, vừa là đường cao của tam giác A’B’C’.

Do đó A’H B’C’.

Mà B’C’ AA’ (do AA’ (A’B’C’)).

Suy ra B’C’ (AA’H) Þ B’C’ AH

Ta có: \(\left\{ \begin{array}{l}\left( {AB'C'} \right) \cap \left( {A'B'C'} \right) = B'C'\\\left( {AA'H} \right) \cap \left( {AB'C'} \right) = AH\\\left( {AA'H} \right) \cap \left( {A'B'C'} \right) = A'H\\B'C' \bot AH,B'C' \bot A'H\end{array} \right.\)

Suy ra góc giữa hai mặt phẳng (AB’C’) và (A’B’C’) là góc giữa hai đường thẳng AH và A’H, tức là \(\widehat {AHA'} = 60^\circ \).

Ta có \({S_{\Delta A'B'C'}} = {S_{\Delta ABC}} = \frac{1}{2}AB.AC.\sin 120^\circ = \frac{1}{2}a.a.\sin 120^\circ = \frac{{{a^2}\sqrt 3 }}{4}\).

Lại có \(B'C' = BC = \sqrt {A{B^2} + A{C^2} - 2AB.AC.\cos 120^\circ } \)

\( = \sqrt {{a^2} + {a^2} - 2a.a.\cos 120^\circ } = a\sqrt 3 \).

Suy ra \(A'H = \frac{{2{S_{\Delta A'B'C'}}}}{{B'C'}} = \frac{{2.\frac{{{a^2}\sqrt 3 }}{4}}}{{a\sqrt 3 }} = \frac{a}{2}\).

Ta có AA’ (A’B’C’). Suy ra AA’ A’H.

Khi đó \(AA' = A'H.\tan \widehat {AHA'} = \frac{a}{2}.\tan 60^\circ = \frac{{a\sqrt 3 }}{2}\).

Vậy thể tích của khối lăng trụ đã cho là:

\(V = AA'.{S_{\Delta ABC}} = \frac{{a\sqrt 3 }}{2}.\frac{{{a^2}\sqrt 3 }}{4} = \frac{{3{a^3}}}{8}\).

Do đó ta chọn phương án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack

1) Ta có \(\widehat {OAM} = 90^\circ \) (do MA là tiếp tuyến của (O), A là tiếp điểm).

Suy ra ba điểm O, A, M cùng thuộc một đường tròn đường kính OM   (1)

Lại có \(\widehat {OBM} = 90^\circ \) (do MB là tiếp tuyến của (O), B là tiếp điểm).

Suy ra ba điểm O, B, M cùng thuộc một đường tròn đường kính OM   (2)

Từ (1), (2), ta được tứ giác AMBO nội tiếp đường tròn đường kính OM.

2) Đường tròn (O) có NP là dây cung.

Mà K là trung điểm của NP (giả thiết).

Suy ra OK NP tại K hay \(\widehat {OKM} = 90^\circ \).

Do đó ba điểm O, K, M cùng thuộc một đường tròn đường kính OM.

Mà từ kết quả câu 1), ta có bốn điểm A, M, B, O cùng thuộc một đường tròn đường kính OM.

Vậy năm điểm O, K, A, M, B cùng nằm trên một đường tròn đường kính OM.

3) Từ kết quả câu 1), ta có tứ giác AMBO nội tiếp đường tròn đường kính OM.

Suy ra AB là dây cung của đường tròn đường kính OM.

Do đó OM AB.

∆OAM vuông tại A có AI là đường cao.

Áp dụng hệ thức lượng trong tam giác vuông, ta có: OA2 = OI.OM và OI.IM = IA2.

OI.OM = R2 và OI.IM = IA2.

Vậy ta có điều phải chứng minh.

4) Ta có OA AM (do AM là tiếp tuyến của (O) và BD MA (giả thiết).

Suy ra OA // BD.

Chứng minh tương tự, ta được OB // AC.

Do đó tứ giác OAHB là hình bình hành.

Mà OA = OB = R.

Vậy tứ giác OAHB là hình thoi.

5) Ta có OH AB (do tứ giác OAHB là hình thoi).

Mà OM AB (theo kết quả câu 3).

Do đó OM ≡ OH.

Vậy ba điểm O, H, M thẳng hàng.

6) Do d là tiếp tuyến của đường tròn (O) nên mọi điểm đều nằm cùng một phía đối với d.

Ta có OAHB là hình thoi (kết quả câu 4).

Suy ra AH = OA = R.

Do đó khi M di động trên d thì H cũng di động nhưng luôn cách A một khoảng cố định bằng R.

Vậy quỹ tích của điểm H khi M di chuyển trên đường thẳng d là nửa đường tròn tâm A, bán kính AH = R.

Câu 2

Lời giải

Lời giải

Đáp án đúng là: B

Media VietJack

Ta có C = C’M ∩ (A’BC).

Suy ra \(\frac{{d\left( {M,\,\left( {A'BC} \right)} \right)}}{{d\left( {C',\,\left( {A'BC} \right)} \right)}} = \frac{{CM}}{{CC'}} = \frac{1}{2}\) (do M là trung điểm CC’).

Hình lăng trụ đứng ABC.A’B’C’ có tất cả các cạnh bằng a.

Suy ra AA’ (ABC) và AA’ = AB = BC = a.

Ta có \({V_{C'.ABC}} = \frac{1}{3}{V_{ABC.A'B'C'}} = \frac{1}{3}.CC'.{S_{\Delta ABC}} = \frac{1}{3}.a.\frac{1}{2}.AB.AC.\sin \widehat {BAC}\)

\( = \frac{1}{6}.a.a.a.\sin 60^\circ = \frac{{{a^3}\sqrt 3 }}{{12}}\).

∆AA’B vuông tại A: \(A'B = \sqrt {A{{A'}^2} + A{B^2}} = \sqrt {{a^2} + {a^2}} = a\sqrt 2 \).

Chứng minh tương tự, ta được \(A'C = a\sqrt 2 \).

Nửa chu vi ∆A’BC là: \(p = \frac{{A'C + A'B + BC}}{2} = \frac{{a\sqrt 2 + a\sqrt 2 + a}}{2} = \frac{{\left( {2\sqrt 2 + 1} \right)a}}{2}\).

Ta có \({S_{\Delta A'BC}} = \sqrt {p\left( {p - A'C} \right)\left( {p - A'B} \right)\left( {p - BC} \right)} \)

\( = \sqrt {\frac{{\left( {2\sqrt 2 + 1} \right)a}}{2}\left( {\frac{{\left( {2\sqrt 2 + 1} \right)a}}{2} - a\sqrt 2 } \right)\left( {\frac{{\left( {2\sqrt 2 + 1} \right)a}}{2} - a\sqrt 2 } \right)\left( {\frac{{\left( {2\sqrt 2 + 1} \right)a}}{2} - a} \right)} = \frac{{{a^2}\sqrt 7 }}{4}\).

Ta có \(d\left( {C',\left( {A'BC} \right)} \right) = \frac{{3{V_{C'.A'BC}}}}{{{S_{\Delta A'BC}}}} = \frac{{3.\frac{{{a^3}\sqrt 3 }}{{12}}}}{{\frac{{{a^2}\sqrt 7 }}{4}}} = \frac{{a\sqrt {21} }}{7}\).

Vì vậy \(d\left( {M,\,\left( {A'BC} \right)} \right) = \frac{1}{2}d\left( {C',\,\left( {A'BC} \right)} \right) = \frac{1}{2}.\frac{{a\sqrt {21} }}{7} = \frac{{a\sqrt {21} }}{{14}}\).

Vậy ta chọn phương án B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP