Câu hỏi:

16/05/2023 130

Cho khối lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác cân với AB = AC = a, \(\widehat {BAC} = 120^\circ \). Mặt phẳng (A’BC’) tạo với đáy một góc 60°. Thể tích của khối lăng trụ đã cho bằng:

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Đáp án đúng là: A

Media VietJack

Trong (A’B’C’): kẻ B’H A’C’.

Mà A’C’ BB’ (do BB’ (A’B’C’)).

Suy ra A’C’ (BB’H) Þ A’C’ BH

Ta có: \(\left\{ \begin{array}{l}\left( {A'BC'} \right) \cap \left( {A'B'C'} \right) = A'C'\\\left( {BB'H} \right) \cap \left( {A'BC'} \right) = BH\\\left( {BB'H} \right) \cap \left( {A'B'C'} \right) = B'H\\A'C' \bot BH,A'C' \bot B'H\end{array} \right.\)

Suy ra góc giữa hai mặt phẳng (A’BC’) và (A’B’C’) là góc giữa hai đường thẳng BH và B’H, tức là \(\widehat {BHB'} = 60^\circ \).

Ta có AB = AC = a (giả thiết). Suy ra ∆ABC cân tại A.

Khi đó \(\widehat {A'C'B'} = \widehat {ACB} = \frac{{180^\circ - \widehat {BAC}}}{2} = \frac{{180^\circ - 120^\circ }}{2} = 30^\circ \).

Ta có \(B'C' = BC = \sqrt {A{B^2} + A{C^2} - 2AB.AC.\cos 120^\circ } \)

\( = \sqrt {{a^2} + {a^2} - 2a.a.\cos 120^\circ } = a\sqrt 3 \).

Suy ra \(B'H = B'C'.\sin \widehat {A'C'B'} = a\sqrt 3 .\sin 30^\circ = \frac{{a\sqrt 3 }}{2}\).

Khi đó \(BB' = B'H.\tan \widehat {BHB'} = \frac{{a\sqrt 3 }}{2}.\tan 60^\circ = \frac{{3a}}{2}\).

Vậy \({V_{ABC.A'B'C'}} = BB'.{S_{\Delta ABC}} = \frac{{3a}}{2}.\frac{1}{2}AB.AC.\sin 120^\circ = \frac{{3a}}{4}.a.a.\sin 120^\circ = \frac{{3\sqrt 3 {a^3}}}{8}\).

Do đó ta chọn phương án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đường tròn (O; R), từ một điểm A trên (O) kẻ tiếp tuyến d với (O). Trên đường thẳng d lấy điểm M bất kì (M khác A), kẻ cát tuyến MNP và gọi K là trung điểm của NP, kẻ tiếp tuyến MB (B là tiếp điểm). Kẻ AC MB, BD MA. Gọi H là giao điểm của AC và BD, I là giao điểm của OM và AB.

1) Chứng minh tứ giác AMBO nội tiếp.

2) Chứng minh năm điểm O, K, A, M, B cùng nằm trên một đường tròn.

3) Chứng minh OI.OM = R2; OI.IM = IA2.

4) Chứng minh OAHB là hình thoi.

5) Chứng minh ba điểm O, H, M thẳng hàng.

6) Tìm quỹ tích của điểm H khi M di chuyển trên đường thẳng d.

Xem đáp án » 13/07/2024 24,511

Câu 2:

Cho tam giác ABC cân tại A, AM là đường cao. Gọi N là trung điểm AC, D là điểm đối xứng của M qua N.

a) Tứ giác ADCM là hình gì? Vì sao?

b) Chứng minh tứ giác ABMD là hình bình hành và BD đi qua trung điểm O của AM.

c) BD cắt AC tại I. Chứng minh \(DI = \frac{2}{3}OB\).

d) E là hình chiếu của N trên BC. Tam giác ABC cân ban đầu cần thêm điều kiện gì để tứ giác ONEM là hình vuông?

Xem đáp án » 13/07/2024 12,570

Câu 3:

Cho tam giác ABC cân tại A, O là trung điểm của BC. Vẽ đường tròn tâm O tiếp xúc với AB, AC tại H, K. Một tiếp tuyến với đường tròn (O) cắt các cạnh AB, AC ở M, N.

a) Cho \(\widehat B = \widehat C = \alpha \). Tính \(\widehat {MON}\).

b) Chứng minh rằng OM, ON chia tứ giác BMNC thành ba tam giác đồng dạng.

c) Cho BC = 2a. Tính tích BM.CN.

d) Tiếp tuyến MN ở vị trí nào thì tổng BM + CN nhỏ nhất?

Xem đáp án » 13/07/2024 9,133

Câu 4:

Cho nửa đường tròn (O; R) có đường kính AB. Kẻ hai tiếp tuyến Ax và By nằm cùng phía với nửa đường tròn. M là điểm bất kì trên nửa đường tròn (M khác A và B). Tiếp tuyến tại M của nửa đường tròn cắt Ax và By lần lượt tại E và N.

a) Chứng minh AOME và BOMN là các tứ giác nội tiếp.

b) Chứng minh AE.BN = R2.

c) Kẻ MH vuông góc By. Đường thẳng MH cắt OE tại K. Chứng minh AK MN.

d) Giả sử \[\widehat {MAB} = \alpha \] và MB < MA. Tính diện tích phần tứ giác BOMH ở bên ngoài nửa đường tròn (O) theo R và α.

e) Xác định vị trí của điểm M trên nửa đường tròn (O) để K nằm trên đường tròn (O).

Xem đáp án » 13/07/2024 9,095

Câu 5:

Cho hình lăng trụ đứng ABC.A’B’C’ có tất cả các cạnh bằng a. Gọi M là trung điểm của CC’. Khoảng cách từ M đến mặt phẳng (A’BC) bằng

Xem đáp án » 16/05/2023 8,690

Câu 6:

Cho tam giác ABC nhọn (AB > AC), có \(\widehat B = 45^\circ \) và vẽ đường cao AH. Gọi M là trung điểm của AB. P là điểm đối xứng với H qua M.

a) Chứng minh rằng tứ giác AHBP là hình vuông.

b) Vẽ đường cao BK của tam giác ABC. Chứng minh rằng HP = 2MK.

c) Gọi D là giao điểm của AH và BK. Qua D và C vẽ các đường thẳng song song với BC và AH sao cho chúng cắt nhau tại Q. Chứng minh: ba điểm P, K, Q thẳng hàng.

d) Chứng minh các đường thẳng CD, AB và PQ đồng quy.

Xem đáp án » 13/07/2024 7,706

Câu 7:

Tại sao sinx ≠ 0 x ≠ kπ?

Xem đáp án » 13/07/2024 6,483

Bình luận


Bình luận