Câu hỏi:

13/07/2024 362

Cho tứ giác ABCD. Gọi E, F theo thứ tự là trung điểm của AB và CD; M, N, P, Q lầ lượt là trung điểm của các đoạn thẳng AF, CE, BF và DE. Gọi I là giao điểm của MP và EF. Chứng minh rằng:

a) I là trung điểm của MP.

b) MNPQ là hình bình hành.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tứ giác ABCD. Gọi E, F theo thứ tự là trung điểm của AB và CD; M, N, P, Q lầ lượt (ảnh 1)

a) Xét tam giác ABF có:

E là trung điểm của AB

P là trung điểm của BF

EP là đường trung bình của ΔABF

EP // AF và EP = \(\frac{{AF}}{2}\)

M là trung điểm AF (giả thiết)

MF = \(\frac{{AF}}{2}\)

Do đó EP // MF và EP = MF. Vậy EPFM là hình bình hành.

I là giao điểm của hai đường chéo MP và EF nên I là trung điểm của MP.

b) Do tứ giác EPFM là hình bình hành nên I là trung điểm của EF.

Chứng minh tương tự ta có ENFQ là hình bình hành mà I là trung điểm của EF

I là trung điểm của NQ (2)

Từ (1) và (2) MNPQ là hình bình hành (hai đường chéo cắt nhau tại trung điểm mỗi đường).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Khi thêm 4 đơn vị vào số bị chia, phép chia khi đó sẽ dư:

4 + 1 = 5

Thì khi ấy phép chia là phép chia hết

Vậy cần tăng thêm 4 đơn vị vào số bị chia.

Lời giải

Ban đầu Hùng có nhiều hơn Dũng:

14 – 5 = 9 (viên bi).

Theo đề bài ta có sơ đồ:

Hùng và Dũng có tất cả 45 viên bi. Nếu Hùng có thêm 5 viên bi thì Hùng có nhiều hơn Dũng (ảnh 1)

Số viên bi của bạn Hùng là:

(45 + 9) : 2 = 27 (viên bi).

Số viên bi của bạn Dũng là:

27 – 9 = 18 (viên bi).

Đáp số: Hùng: 27 viên bi; Dũng: 18 viên bi.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP