Câu hỏi:
12/07/2024 844
Cho hình bình hành ABCD có AB = 8 cm, AD = 6 cm. Trên cạnh BC lấy M sao cho BM = 4 cm. Đường thẳng AM cắt đường chéo BD tại I, cắt đường thẳng DC tại N.
a) Tính tỉ số \(\frac{{IB}}{{ID}}\).
b) Chứng minh ΔMAB và ΔAND đồng dạng.
c) Tính độ dài DN và CN.
d) Chứng minh IA2 = IM.IN.
Cho hình bình hành ABCD có AB = 8 cm, AD = 6 cm. Trên cạnh BC lấy M sao cho BM = 4 cm. Đường thẳng AM cắt đường chéo BD tại I, cắt đường thẳng DC tại N.
a) Tính tỉ số \(\frac{{IB}}{{ID}}\).
b) Chứng minh ΔMAB và ΔAND đồng dạng.
c) Tính độ dài DN và CN.
d) Chứng minh IA2 = IM.IN.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:

a) Ta có: AD // BC
Áp dụng hệ quả định lí Thalès ta có:
\(\frac{{IB}}{{ID}}\, = \,\,\frac{{BM}}{{AD}}\, = \,\,\frac{4}{6}\,\, = \,\,\frac{2}{3}\,\)
b) Xét ΔAMB và ΔNAD có:
\[\widehat {BAM}{\rm{ }} = \widehat {AND}\] (so le trong, AB // CD)
\[\widehat {ABM}{\rm{ }} = \widehat {ADN}\] (góc đối của hình bình hành)
⇒ ΔAMB ᔕ ΔNAD (g.g)
c) ΔAMB ᔕ ΔNAD (cmt)
Suy ra: \(\frac{{DN}}{{AB}}\, = \,\,\frac{{AD}}{{MB}}\, \Rightarrow \,DN\,\, = \,\,\,\frac{{AB\,.\,AD}}{{MB}}\,\,\, = \,\,\frac{{8\,.\,6}}{4}\,\, = \,\,12\left( {cm} \right)\,\,\,\)
Do đó: CN = DN – DC = 12 – 8 = 4 (cm).
d) Do AB // CD nên theo hệ quả định lí Thalès ta có: \(\frac{{IA}}{{IN}}\, = \,\,\frac{{IB}}{{ID}}\,\,\)
Tương tự do AD // BM nên \(\frac{{IB}}{{ID}}\, = \,\,\frac{{IM}}{{IA}}\,\,\)
Suy ra: \(\frac{{IA}}{{IN}}\, = \,\,\frac{{IM}}{{IA}}\,\,\)hay IA2 = IM. IN.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Khi thêm 4 đơn vị vào số bị chia, phép chia khi đó sẽ dư:
4 + 1 = 5
Thì khi ấy phép chia là phép chia hết
Vậy cần tăng thêm 4 đơn vị vào số bị chia.
Lời giải

Xét tam giác CDE và tam giác CBF có:
\(\widehat {CDA}\, = \,\widehat {CBF}\,\)= 90°
CD = CB
\(\widehat {DCE}\,\, = \,\,\widehat {FCB}\,\)= 90° – \(\widehat {BCE}\)
Suy ra: ΔCDE ᔕ ΔCBF (g.c.g)
⇒\(\frac{{CD}}{{CB}} = \frac{{CE}}{{CF}}\) mà CD = CB nên CE = CF.
Ta thấy các tam giác EAF vuông tại A, ECF vuông tại C có M là trung điểm cạnh huyền EF.
Suy ra MA = MC =\(\frac{1}{2}EF\).
Vậy M, B, D cùng nằm trên trung trực đoạn AC hay M, B, D thẳng hàng.
b) Từ giả thiết và câu a ta có: ΔECF vuông cân tại C.
Vì M là trung điểm EF nên ME = MF
Mà CM = \(\frac{1}{2}EF\) = ME = MF
Nên ΔMEC vuông cân tại M.
Ta có: \(\widehat {ACE}\,\,\)= 45° – \(\widehat {BCE}\,\)
\(\widehat {BCM}\,\)= 45° – \(\widehat {BCE}\,\)
Suy ra: \(\widehat {ACE}\, = \,\widehat {BCM}\,\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.