Câu hỏi:
31/05/2023 301Trên các cạnh AB, BC, CA của tam giác ABC lần lượt lấy C1, A1, B1 sao cho các đường thẳng AA1, BB1, CC1 đồng quy tại O. Đường thẳng qua O // AC cắt A1B1, B1C1, tại K và M tương ứng. Chứng minh rằng: OK = OM.
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Qua B vẽ đường thẳng song song với AC cắt A1B1 và B1C1 lần lượt tại K1 và M1.
Theo giả thiết: MK // AC
Mà M1K1 // AC (theo cách vẽ)
Suy ra: MK // M1K1.
Xét tam giác B1K1M1 có MK // M1K1 suy ra: \(\frac{{MO}}{{B{M_1}}}\, = \,\,\frac{{OK}}{{B{K_1}}}\,\)(*)
Xét tam giác AB1C1 và tam giác BM1C1 có:
\(\widehat {A{C_1}{B_1}} = \,\widehat {B{C_1}{M_1}}\)(2 góc đối đỉnh)
\(\widehat {A{B_1}{C_1}} = \,\widehat {B{M_1}{C_1}}\)(2 góc so le trong vì AC // M1K1)
Suy ra: ∆ AB1C1 ᔕ ∆ BM1C1 (g.g)
Nên \(\frac{{B{M_1}}}{{A{B_1}}}\, = \,\frac{{B{C_1}}}{{A{C_1}}}\)⇒ \(B{M_1} = A{B_1}\,.\,\,\frac{{B{C_1}}}{{A{C_1}}}\)(1)
Tương tự: ∆ CB1A1 ᔕ ∆ BK1A1 (g.g)
Nên \(\frac{{B{K_1}}}{{C{B_1}}}\, = \,\frac{{B{A_1}}}{{C{A_1}}}\)⇒ \(B{K_1} = C{B_1}\,.\,\,\frac{{B{A_1}}}{{C{A_1}}}\)(2)
Lấy (1) chia (2) ta được: \(\frac{{B{M_1}}}{{B{K_1}}}\, = \frac{{A{B_1}}}{{B{C_1}}}\,.\,\,\frac{{C{A_1}}}{{B{A_1}}}\,.\,\frac{{C{B_1}}}{{A{C_1}}}\,\, = \,\,1\) (áp dụng định lí Xê–va)
Suy ra: BM1 = BK1 (**)
Từ (*) và (**), ta có: OM = OK
Vậy OM = OK.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một phép chia có số chia là 5, số dư là 1. Để phép chia là phép chia hết thì cần thêm vào số bị chia bao nhiêu đơn vị?
Câu 2:
Cho hình thang OABC, M, N lần lượt là trung điểm của OB và OC. Chứng minh rằng: \[\overrightarrow {AM} = \frac{1}{2}\overrightarrow {OB} - \overrightarrow {OA} \]và \[\overrightarrow {MN} = \frac{1}{2}\left( {\overrightarrow {OC} - \overrightarrow {OB} \,} \right)\].
Câu 3:
Hùng và Dũng có tất cả 45 viên bi. Nếu Hùng có thêm 5 viên bi thì Hùng có nhiều hơn Dũng 14 viên. Hỏi lúc đầu mỗi bạn có bao nhiêu viên bi?
Câu 4:
Cho hình vuông ABCD cạnh a, điểm N trên cạnh AB, tia CN cắt tia DA tại E: tia Cx vuông góc với tia CE, tia Cx cắt AB tại F. Gọi M là trung điểm của đoạn EF.
a) CE = CF và M, B, D thẳng hàng.
b) Chứng minh \(\widehat {ACE}\,\, = \,\,\widehat {BCM}\).
Câu 5:
Câu 7:
Cho tam giác ABC thỏa mãn sin2a = sin2b + sin2c. Chứng minh rằng tam giác ABC vuông. Biết AB = c; AC = b; BC = a.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
về câu hỏi!