Câu hỏi:

31/05/2023 406

Trên các cạnh AB, BC, CA của tam giác ABC lần lượt lấy C1, A1, B1 sao cho các đường thẳng AA1, BB1, CC1 đồng quy tại O. Đường thẳng qua O // AC cắt A1B1, B1C1, tại K và M tương ứng. Chứng minh rằng: OK = OM.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Trên các cạnh AB, BC, CA của tam giác ABC lần lượt lấy C1, A1, B1 sao cho các đường thẳng (ảnh 1)

Qua B vẽ đường thẳng song song với AC cắt A1B1 và B1C1 lần lượt tại K­1 và M1.

Theo giả thiết: MK // AC

Mà M1K1 // AC (theo cách vẽ)

Suy ra: MK // M1K1.

Xét tam giác B11M1 có MK // M1K1 suy ra: \(\frac{{MO}}{{B{M_1}}}\, = \,\,\frac{{OK}}{{B{K_1}}}\,\)(*)

Xét tam giác AB1C1 và tam giác BM1C1 có:

\(\widehat {A{C_1}{B_1}} = \,\widehat {B{C_1}{M_1}}\)(2 góc đối đỉnh)

\(\widehat {A{B_1}{C_1}} = \,\widehat {B{M_1}{C_1}}\)(2 góc so le trong vì AC // M1K1)

Suy ra: ∆ AB1C1 ∆ BM1C1 (g.g)

Nên \(\frac{{B{M_1}}}{{A{B_1}}}\, = \,\frac{{B{C_1}}}{{A{C_1}}}\) \(B{M_1} = A{B_1}\,.\,\,\frac{{B{C_1}}}{{A{C_1}}}\)(1)

Tương tự: ∆ CB1A1 ∆ BK1A1 (g.g)

Nên \(\frac{{B{K_1}}}{{C{B_1}}}\, = \,\frac{{B{A_1}}}{{C{A_1}}}\) \(B{K_1} = C{B_1}\,.\,\,\frac{{B{A_1}}}{{C{A_1}}}\)(2)

Lấy (1) chia (2) ta được: \(\frac{{B{M_1}}}{{B{K_1}}}\, = \frac{{A{B_1}}}{{B{C_1}}}\,.\,\,\frac{{C{A_1}}}{{B{A_1}}}\,.\,\frac{{C{B_1}}}{{A{C_1}}}\,\, = \,\,1\) (áp dụng định lí Xê–va)

Suy ra: BM1 = BK1 (**)

Từ (*) và (**), ta có: OM = OK

Vậy OM = OK.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Khi thêm 4 đơn vị vào số bị chia, phép chia khi đó sẽ dư:

4 + 1 = 5

Thì khi ấy phép chia là phép chia hết

Vậy cần tăng thêm 4 đơn vị vào số bị chia.

Lời giải

Ban đầu Hùng có nhiều hơn Dũng:

14 – 5 = 9 (viên bi).

Theo đề bài ta có sơ đồ:

Hùng và Dũng có tất cả 45 viên bi. Nếu Hùng có thêm 5 viên bi thì Hùng có nhiều hơn Dũng (ảnh 1)

Số viên bi của bạn Hùng là:

(45 + 9) : 2 = 27 (viên bi).

Số viên bi của bạn Dũng là:

27 – 9 = 18 (viên bi).

Đáp số: Hùng: 27 viên bi; Dũng: 18 viên bi.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP