Câu hỏi:

13/07/2024 1,192

Cho x = \(1 + \sqrt[3]{2} + \sqrt[3]{4}\). Chứng minh rằng P = x3 – 3x2 – 3x + 3 là một số chính phương.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

P = x3 – 3x2 – 3x + 3 = (x – 1)3 – 6x + 4

P = \[{\left( {\sqrt[3]{2} + \sqrt[3]{4}} \right)^3} - 6\left( {1 + \sqrt[3]{2} + \sqrt[3]{4}} \right) + 4\]

P = \[2 + 4 + 3\sqrt[3]{2}\sqrt[3]{4}\left( {\sqrt[3]{2} + \sqrt[3]{4}} \right) - 6\left( {\sqrt[3]{2} + \sqrt[3]{4}} \right) - 6 + 4\]

P = \[6 + 3\sqrt[3]{8}\left( {\sqrt[3]{2} + \sqrt[3]{4}} \right) - 6\left( {\sqrt[3]{2} + \sqrt[3]{4}} \right) - 6 + 4\]

P = 4 = 22

Vậy P là một số chính phương.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Khi thêm 4 đơn vị vào số bị chia, phép chia khi đó sẽ dư:

4 + 1 = 5

Thì khi ấy phép chia là phép chia hết

Vậy cần tăng thêm 4 đơn vị vào số bị chia.

Lời giải

Ban đầu Hùng có nhiều hơn Dũng:

14 – 5 = 9 (viên bi).

Theo đề bài ta có sơ đồ:

Hùng và Dũng có tất cả 45 viên bi. Nếu Hùng có thêm 5 viên bi thì Hùng có nhiều hơn Dũng (ảnh 1)

Số viên bi của bạn Hùng là:

(45 + 9) : 2 = 27 (viên bi).

Số viên bi của bạn Dũng là:

27 – 9 = 18 (viên bi).

Đáp số: Hùng: 27 viên bi; Dũng: 18 viên bi.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP