Cho tam giác ABC vuông tại A, đường cao AH.
Chứng minh rằng: SBHD = \(\frac{1}{4}\)SBKC cos2ABD.
Cho tam giác ABC vuông tại A, đường cao AH.
Chứng minh rằng: SBHD = \(\frac{1}{4}\)SBKC cos2ABD.
Quảng cáo
Trả lời:

Ta có: SABC = \(\frac{1}{2}CH.AB = \frac{1}{2}AC.AB.\frac{{CH}}{{AC}} = \frac{1}{2}AC.AB.\sin A\)
SBHD = \(\frac{1}{2}BH.BD.\sin \widehat {DBH}\)
SBKC = \(\frac{1}{2}BK.BC.\sin \widehat {KBC}\)
\(\frac{{{S_{BHD}}}}{{{S_{KBC}}}} = \frac{{BH.BD}}{{BK.BC}} = \frac{2}{8}\,.\,\frac{{BD}}{{BK}} = \,\frac{1}{4}\,.\,\frac{{B{D^2}}}{{BK.BD}}\, = \,\frac{1}{4}\,.\,\frac{{B{D^2}}}{{B{A^2}}} = \frac{1}{4}\,.\,{\cos ^2}\widehat {ABD}\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Khi thêm 4 đơn vị vào số bị chia, phép chia khi đó sẽ dư:
4 + 1 = 5
Thì khi ấy phép chia là phép chia hết
Vậy cần tăng thêm 4 đơn vị vào số bị chia.
Lời giải
Ban đầu Hùng có nhiều hơn Dũng:
14 – 5 = 9 (viên bi).
Theo đề bài ta có sơ đồ:

Số viên bi của bạn Hùng là:
(45 + 9) : 2 = 27 (viên bi).
Số viên bi của bạn Dũng là:
27 – 9 = 18 (viên bi).
Đáp số: Hùng: 27 viên bi; Dũng: 18 viên bi.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.