Câu hỏi:

11/07/2024 1,286

Cho tam giác ABC gọi M,N,P lần lượt là trung điểm của 3 cạnh AB,AC,BC. Gọi I là giao điểm AP và MN. Chứng minh I là trung điểm MN.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC gọi M,N,P lần lượt là trung điểm của 3 cạnh AB,AC,BC. Gọi I là giao điểm (ảnh 1)

Ta có: MN là đường trung bình của tam giác ABC (M là trung điểm AB, N là trung điểm của AC). Suy ra: MN // BC

Xét tam giác ABP có:

M là trung điểm AB

MI // BP

Suy ra: MI là đường trung bình của tam giác ABP

Nên I là trung điểm của AP hay IA = IP

Và IM = \(\frac{1}{2}\)PB (1)

Xét tam giác ACP có: AN = NC; IA = IP nên IN là đường trung bình của tam giác APC.

Suy ra: IN = \(\frac{1}{2}\)PC (2)

Mặt khác: PB = PC (P là trung điểm BC) (3)

Từ (1), (2) và (3), suy ra: IM = IN hay I là trung điểm MN.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Khi thêm 4 đơn vị vào số bị chia, phép chia khi đó sẽ dư:

4 + 1 = 5

Thì khi ấy phép chia là phép chia hết

Vậy cần tăng thêm 4 đơn vị vào số bị chia.

Lời giải

Cho hình vuông ABCD cạnh a, điểm N trên cạnh AB, tia CN cắt tia DA tại E: tia Cx vuông góc (ảnh 1)

Xét tam giác CDE và tam giác CBF có:

\(\widehat {CDA}\, = \,\widehat {CBF}\,\)= 90°

CD = CB

\(\widehat {DCE}\,\, = \,\,\widehat {FCB}\,\)= 90° – \(\widehat {BCE}\)

Suy ra: ΔCDE ΔCBF (g.c.g)

\(\frac{{CD}}{{CB}} = \frac{{CE}}{{CF}}\) mà CD = CB nên CE = CF.

Ta thấy các tam giác EAF vuông tại A, ECF vuông tại C có M là trung điểm cạnh huyền EF.

Suy ra MA = MC =\(\frac{1}{2}EF\).

Vậy M, B, D cùng nằm trên trung trực đoạn AC hay M, B, D thẳng hàng.

b) Từ giả thiết và câu a ta có: ΔECF vuông cân tại C.

Vì M là trung điểm EF nên ME = MF

Mà CM = \(\frac{1}{2}EF\) = ME = MF

Nên ΔMEC vuông cân tại M.

Ta có: \(\widehat {ACE}\,\,\)= 45° – \(\widehat {BCE}\,\)

\(\widehat {BCM}\,\)=  45° – \(\widehat {BCE}\,\)

Suy ra: \(\widehat {ACE}\, = \,\widehat {BCM}\,\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay