Cho đường tròn (O; 4 cm), đường kính AB. Lấy điểm H thuộc đoạn AO sao cho OH = 1 cm. Kẻ dây cung DC vuông góc với AB tại H.
a) Chứng minh △ABC vuông và tính độ dài AC.
b) Tiếp tuyến tại A của (O) cắt BC tại E. Chứng minh tam giác CBE cân và \(\frac{{EC}}{{DH}} = \frac{{EA}}{{DB}}\).
c) Gọi I là trung điểm của EA; đoạn IB cắt (O) tại Q. Chứng minh CI là tiếp tuyến của (O) và từ đó suy ra \(\widehat {ICQ} = \widehat {CBI}\).
d) Tiếp tuyến tại B của (O) cắt IC tại F. Chứng minh ba đường thẳng IB, HC, AF đồng quy.
Cho đường tròn (O; 4 cm), đường kính AB. Lấy điểm H thuộc đoạn AO sao cho OH = 1 cm. Kẻ dây cung DC vuông góc với AB tại H.
a) Chứng minh △ABC vuông và tính độ dài AC.
b) Tiếp tuyến tại A của (O) cắt BC tại E. Chứng minh tam giác CBE cân và \(\frac{{EC}}{{DH}} = \frac{{EA}}{{DB}}\).
c) Gọi I là trung điểm của EA; đoạn IB cắt (O) tại Q. Chứng minh CI là tiếp tuyến của (O) và từ đó suy ra \(\widehat {ICQ} = \widehat {CBI}\).
d) Tiếp tuyến tại B của (O) cắt IC tại F. Chứng minh ba đường thẳng IB, HC, AF đồng quy.
Quảng cáo
Trả lời:

a) ΔABC nội tiếp đường tròn đường kính AB
Suy ra: ΔABC vuông tại C.
⇒ AC2 = AH.AB = (R – OH) . 2R = (4 – 1) . 2 . 4 = 24
⇔ AC = \(2\sqrt 6 \)(cm)
b) Xét tam giác vuông OHC và tam giác vuông OHD có:
Chung OH
OC = OD
Suy ra: ∆OHC = ∆OHD (cạnh huyền – cạnh góc vuông)
⇒ HC = HD
⇒ BH là là trung tuyến của ΔBCD mà BH cũng là đường cao
⇒ ΔBCD cân tại B
Ta có: AC ⊥ CB ⇒ ΔCAE vuông tại C
CD ⊥ AB ⇒ ΔHBC vuông tại H
Mà \(\widehat {CBH} = \widehat {EAC}\)(cùng phụ với \(\widehat {CAB}\))
Xét ∆CAE và ∆HBC có:
\(\widehat {ECA} = \widehat {CHB}\)= 90°
\(\widehat {EAC} = \widehat {CBH}\)(cùng bằng \(\frac{1}{2}\)cung AC)
Suy ra: ∆CAE ~ ∆HBC (g.g)
Suy ra: \(\frac{{AE}}{{BC}} = \frac{{EC}}{{HC}}\)
Mà ΔBCD cân tại B, BH là trung tuyến
⇒ BC = BD và HC = DH
Vậy \(\frac{{AE}}{{BD}} = \frac{{EC}}{{DH}}\).
c) ΔAOC cân tại O ⇒ \(\widehat {OAC} = \widehat {OCA}\)
mà \(\widehat {OAC} = \widehat {CEI}\) (cùng phụ với \(\widehat {EAC}\))
⇒ \(\widehat {OCA} = \widehat {CEI}\)
ΔACE vuông tại C có CI là trung tuyến ứng với cạnh huyền
⇒ CI = IE ⇒ ΔCIE cân tại I
⇒ \(\widehat {ICE} = \widehat {CEI}\)
⇒ \(\widehat {ICE} = \widehat {OCA}\)
Lại có \(\widehat {ICE} + \widehat {ICA}\)= 90°
⇒ \(\widehat {ICA} + \widehat {OCA}\)= 90°
⇒ \(\widehat {OCI}\)= 90°
⇒ CI là tiếp tuyến của (O)
⇒ \[\widehat {ICQ} = \widehat {CBI}\]= 90° (góc tạo bởi tiếp tuyến và dây cung bằng góc nội tiếp chắn cung đó)
d, Gọi G = IB ∩ HC
Ta có: CG // BF (cùng ⊥ AB)
\(\frac{{IC}}{{CF}} = \frac{{IG}}{{GB}}\)
Suy ra: \(\frac{{IA}}{{CF}} = \frac{{IG}}{{GB}}\)
AI // BF (cùng ⊥ AB)
⇒ \[\widehat {AIG} = \widehat {GBF}\]
Xét tam giác IAG và tam giác GBF có:
\[\widehat {AIG} = \widehat {GBF}\]
\(\frac{{IA}}{{CF}} = \frac{{IG}}{{GB}}\)
⇒ ΔAIG ᔕ ΔFBG (c.g.c)
⇒\[\widehat {IGA} = \widehat {BGF}\]
⇒ A, G, F thẳng hàng
⇒ 3 đường thẳng IB, HC, AF đồng quy tại G.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi số có 3 chữ số khác nhau là: \(\overline {abc} \)
Để được số chia hết cho 5 thì c = 0 hoặc c = 5
Với c = 0 thì b có 9 cách chọn
a có 8 cách chọn
Vậy có: 8.9.1 = 72 (số)
+ Với c = 5, c có 1 cách chọn
Chữ số a có 8 cách chọn (vì a khác 0)
b có 8 cách chọn
Vậy có: 8.8.1 = 64 (số)
Vậy lập được: 72 + 64 = 136 (số).
Lời giải
Gọi chiều rộng hình chữ nhật là a;
Chiều dài hình chữ nhật là b (a,b>0)
Theo bài ta có phương trình:
\(\left\{ {\begin{array}{*{20}{l}}{\left( {a + b} \right){\rm{ }}.{\rm{ }}2{\rm{ }} = {\rm{ }}80}\\{\left( {a + 3} \right)\left( {b + 5} \right){\rm{ }} = {\rm{ }}ab{\rm{ }} + {\rm{ }}195}\end{array}} \right.\)
⇔ \(\left\{ {\begin{array}{*{20}{l}}{a + b = {\rm{40}}}\\{5a + 3b + 15\,\,{\rm{ = }}\,\,195}\end{array}} \right.\)
⇔ \[\left\{ {\begin{array}{*{20}{l}}{a + b = {\rm{40}}}\\{5\left( {a + b} \right) - 2b\,\,{\rm{ = }}\,\,180}\end{array}} \right.\]
⇔ \[\left\{ {\begin{array}{*{20}{l}}{a + b = {\rm{40}}}\\{2b = 20}\end{array}} \right.\]
⇔ \[\left\{ {\begin{array}{*{20}{l}}{a = 3{\rm{0}}}\\{b = 10}\end{array}} \right.\]
Vậy chiều dài là 30m và chiều rộng là chiều rộng là 10m.
Kích thước mảnh đất là:
30 . 10 = 300 (m2).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.