Cho H, K là các giao điểm của đường tròn (O1), (O2). Đường thẳng O1H cắt (O1) tại A, (O2) tại B. O2H cắt (O1) tại C và (O2) tại D. Chứng minh rằng ba đường thẳng AC, BD, HK đồng quy tại 1 điểm.
Cho H, K là các giao điểm của đường tròn (O1), (O2). Đường thẳng O1H cắt (O1) tại A, (O2) tại B. O2H cắt (O1) tại C và (O2) tại D. Chứng minh rằng ba đường thẳng AC, BD, HK đồng quy tại 1 điểm.
Quảng cáo
Trả lời:


Gọi E là giao điểm của AC và BD.
Vì các tam giác ACH, AKH nội tiếp đường tròn (O1) có cạnh HA là đường kính nên tam giác ACH vuông tại C và tam giác AKH vuông tại K.
Suy ra
Vì các tam giác HDK, HDB nội tiếp đường tròn (O2) có cạnh HD là đường kính nên tam giác HDK vuông tại K và tam giác HBD vuông tại B.
Suy ra
Từ (2), (4), suy ra ba điểm A, K, D thẳng hàng.
Do đó HK ⊥ AD.
Từ (1), (3), suy ra H là trực tâm của tam giác AED.
Do đó HE ⊥ AD.
Vì vậy H ∈ EK.
Vậy ba đường thẳng AC, BD, HK đồng quy tại 1 điểm.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đặt A = 1.2 + 2.3 + 3.4 + ... + 98.99.
Suy ra 3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 98.99.3.
= 1.2.3 + 2.3.(4 – 1) + 3.4.(5 – 2) + ... + 98.99.(100 – 97).
= 1.2.3 + 2.3.4 – 1.2.3 + 3.4.5 – 2.3.4 + ... + 98.99.100 – 97.98.99.
= 98.99.100
Suy ra A = 98.99.100 : 3 = 98.33.100 = 323 400.
Vậy A = 323 400.
Lời giải

Ta có D, E lần lượt là trung điểm của AC, AB.
Suy ra .
Gọi G là giao điểm của CE và BD.
Suy ra G là trọng tâm của tam giác ABC.
Đặt GD = x, GE = y.
Áp dụng tính chất trọng tâm cho tam giác ABC, ta được:
⦁ . Suy ra BG = 2GD = 2x.
⦁ . Suy ra CG = 2GE = 2y.
Áp dụng định lí Pitago cho tam giác BGE vuông tại G: BG2 + GE2 = BE2.
⇔ 4x2 + y2 = 9 (1)
Áp dụng định lí Pitago cho tam giác CGD vuông tại G: CG2 + GD2 = CD2.
⇔ 4y2 + x2 = 16 (2)
Lấy (1) + (2) vế theo vế, ta được 5(x2 + y2) = 25.
⇔ x2 + y2 = 5.
Áp dụng định lí Pitago cho tam giác BGC vuông tại G: BG2 + CG2 = BC2.
⇔ 4x2 + 4y2 = BC2.
⇔ 4(x2 + y2) = BC2.
⇔ BC2 = 4.5 = 20.
Vậy .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.