Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
A = 12 + 22 + 32 + … + n2
A = (1 . 2 – 1) + (2 . 3 – 2) + (3 . 4 – 3) + … + [n(n + 1) – n]
A = [1 . 2 + 2 . 3 + … + n(n + 1)] – (1 + 2 + 3 + … + n)
Đặt B = 1 . 2 + 2 . 3 + … + n(n + 1) và C = 1 + 2 + 3 + … + n.
+ Ta tính tổng B:
B = 1 . 2 + 2 . 3 + 3 . 4 + ... + n(n + 1)
Nhân 2 vế của B với 3 ta có:
3B = 1 . 2 . 3 + 2 . 3 . 3 + 3 . 4 . 3 + ... + n(n + 1) . 3
3B = 1 . 2 . 3 + 2 . 3 . (4 – 1) + 3 . 4 . (5 – 2) + ... + n(n + 1)[(n + 2) – (n – 1)]
3B = 1 . 2 . 3 + 2 . 3 . 4 – 1 . 2 . 3 + 3 . 4 . 5 – 2 . 3 . 4 + ... + n(n + 1)(n + 2) – (n –1)n(n + 1)
3B = n (n + 1)(n + 2)
B =
+ Ta tính tổng C:
C = 1 + 2 + 3 + … + n
Nhân 2 vế của C với 2 ta có:
2C = 1 . 2 + 2 . 2 + 3 . 2 +…+ n . 2
2C = 1 . 2 + 2(3 – 1) + 3(4 – 2) +…+ {n.[(n + 1) – (n – 1)]}
2C = 1 . 2 – 1 . 2 + 2 . 3 – 2 . 3 + 3 . 4 – … – n(n – 1) + n (n + 1)
2C = [1 . 2 – 1 . 2] + [2 . 3 – 2 . 3] + [3 . 4 – 3 . 4] + … – n(n – 1) + n(n + 1)
2C = 0 + 0 + 0 + …. + n.(n + 1)
2C = n.(n + 1)
C =
Do đó, A = B – C =
.
Vậy A .
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có góc A bằng 60° và cạnh BC = . Tính bán kính của đường tròn ngoại tiếp tam giác ABC.
Câu 3:
Biển số xe máy của tỉnh A (nếu không kể mã số tỉnh) có 6 kí tự, trong đó kí tự ở vị trí đầu tiên là một chữ cái (trong bảng 26 cái tiếng Anh), kí tự ở vị trí thứ hai là một chữ số thuộc tập {1; 2; 3…; 9} mỗi kí tự ở bốn vị trí tiếp theo là một chữ số thuộc tập {1; 2; 3;…; 9}. Hỏi nếu chỉ dùng một mã số tỉnh thì tỉnh A có thể làm được nhiều nhất bao nhiêu biển số xe máy khác nhau?
Câu 4:
Số học sinh khối 6 của trường là một số tự nhiên có ba chữ số. Mỗi khi xếp hàng 18, hàng 21, hàng 24 đều vừa đủ hàng. Tính số học sinh khối 6 của trường đó.
Câu 5:
Câu 6:
So sánh tích 2020 ∙ 2020 và tích 2019 ∙ 2021 mà không tính cụ thể giá trị của chúng.
Câu 7:
Hồng có nhiều hơn Hà 10 viên bi, nếu Hồng cho Hà 4 viên bi thì Hồng còn nhiều hơn Hà mấy viên bi?
về câu hỏi!