Câu hỏi:

19/08/2025 3,308 Lưu

Chứng minh rằng không có số tự nhiên n nào để n2 + 2002 là số chính phương.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Để n2 + 2002 là số chính phương thì n2 + 2002 = a2 (a là số tự nhiên khác 0)

a2 − n2 = 2002

(a n) (a + n) = 2002

Do 22002 2.

(a n) (a + n) 2 hay a n 2 hoặc a + n 2 hoặc a − n và a + n đều chia hết cho 2

mà a – n − (a + n) = –2n  2

a − n và a + n cùng chẵn hoặc lẻ  a − n; a + n đều chia hết cho 2

(a n) (a + n) 4

Mà 2002 không chia hết cho 4, mâu thuẫn.

Vậy không tồn tại n để n2 + 2002 là số chính phương.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Muốn cộng hai luỹ thừa cùng cơ số, ta cộng số mũ với nhau và giữ nguyên cơ số.

am + an = am + n.

Lời giải

Ta có: BC = 3 , góc A bằng 60°.

Theo định lý sin:

BCsinA=2RR=32sin60°=1

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP