Câu hỏi:

25/06/2023 1,590

Chứng minh rằng không có số tự nhiên n nào để n2 + 2002 là số chính phương.

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Để n2 + 2002 là số chính phương thì n2 + 2002 = a2 (a là số tự nhiên khác 0)

a2 − n2 = 2002

(a n) (a + n) = 2002

Do 22002 2.

(a n) (a + n) 2 hay a n 2 hoặc a + n 2 hoặc a − n và a + n đều chia hết cho 2

mà a – n − (a + n) = –2n  2

a − n và a + n cùng chẵn hoặc lẻ  a − n; a + n đều chia hết cho 2

(a n) (a + n) 4

Mà 2002 không chia hết cho 4, mâu thuẫn.

Vậy không tồn tại n để n2 + 2002 là số chính phương.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC có góc A bằng 60° và cạnh BC = 3 . Tính bán kính của đường tròn ngoại tiếp tam giác ABC.

Xem đáp án » 25/06/2023 30,809

Câu 2:

Cách cộng hai lũy thừa có cùng cơ số?

Xem đáp án » 25/06/2023 18,443

Câu 3:

Biển số xe máy của tỉnh A (nếu không kể mã số tỉnh) có 6 kí tự, trong đó kí tự ở vị trí đầu tiên là một chữ cái (trong bảng 26 cái tiếng Anh), kí tự ở vị trí thứ hai là một chữ số thuộc tập {1; 2; 3…; 9} mỗi kí tự ở bốn vị trí tiếp theo là một chữ số thuộc tập {1; 2; 3;…; 9}. Hỏi nếu chỉ dùng một mã số tỉnh thì tỉnh A có thể làm được nhiều nhất bao nhiêu biển số xe máy khác nhau?

Xem đáp án » 25/06/2023 14,112

Câu 4:

Số học sinh khối 6 của trường là một số tự nhiên có ba chữ số. Mỗi khi xếp hàng 18, hàng 21, hàng 24 đều vừa đủ hàng. Tính số học sinh khối 6 của trường đó.

Xem đáp án » 25/06/2023 13,640

Câu 5:

Tìm tất cả các cặp số nguyên (x, y) thỏa mãn: x2 + 2y2 + 2xy + 3y – 4 = 0.

Xem đáp án » 25/06/2023 6,766

Câu 6:

So sánh tích 2020 ∙ 2020 và tích 2019 ∙ 2021 mà không tính cụ thể giá trị của chúng.

Xem đáp án » 25/06/2023 5,039

Câu 7:

Hồng có nhiều hơn Hà 10 viên bi, nếu Hồng cho Hà 4 viên bi thì Hồng còn nhiều hơn Hà mấy viên bi?

Xem đáp án » 25/06/2023 4,315

Bình luận


Bình luận