Câu hỏi:

19/08/2025 2,571 Lưu

Chứng minh rằng không có số tự nhiên n nào để n2 + 2002 là số chính phương.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Để n2 + 2002 là số chính phương thì n2 + 2002 = a2 (a là số tự nhiên khác 0)

a2 − n2 = 2002

(a n) (a + n) = 2002

Do 22002 2.

(a n) (a + n) 2 hay a n 2 hoặc a + n 2 hoặc a − n và a + n đều chia hết cho 2

mà a – n − (a + n) = –2n  2

a − n và a + n cùng chẵn hoặc lẻ  a − n; a + n đều chia hết cho 2

(a n) (a + n) 4

Mà 2002 không chia hết cho 4, mâu thuẫn.

Vậy không tồn tại n để n2 + 2002 là số chính phương.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: BC = 3 , góc A bằng 60°.

Theo định lý sin:

BCsinA=2RR=32sin60°=1

Lời giải

Muốn cộng hai luỹ thừa cùng cơ số, ta cộng số mũ với nhau và giữ nguyên cơ số.

am + an = am + n.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP