Cho A = 1 + 2 + 22 + 23 + ... + 22010 + 22011. Hỏi số A + 8 có phải là số chính phương không?
Cho A = 1 + 2 + 22 + 23 + ... + 22010 + 22011. Hỏi số A + 8 có phải là số chính phương không?
Quảng cáo
Trả lời:
Ta có :
A = 1 + 2 + 22 + 23 + ... + 22010 + 22011
⇒ A = 20 + 21 + + 22 + 23 + ... + 22010 + 22011
A có tất cả (2011 − 0) : 1 + 1 = 2012 số hạng. Mà 2012 ⋮ 2
⇒ Ta sẽ gộp 2 số hạng của A là 1 tổng, ta có:
A = (20 + 21) + (22 + 23) + ... + ( 22010 + 22011)
⇒ A = 1 ∙ (20 + 21) + 22 ∙ (20 + 21) + ... + 22010 ∙ (20 + 21)
⇒ A = (1 + 22 + ... + 22010) ∙ (20 + 21)
⇒ A = (1 + 22 + ... + 22010) ∙ 3
⇒ A + 8 = (1 + 22 + ... + 22010) ∙ 3 + 8
Do 3 ⋮ 3
⇒ (1 + 22 + ... + 22010) ∙ 3 ⋮ 3
⇒ (1 + 22 + ... + 22010) ∙ 3 ≡ 0 (mod 3)
Mà 8 ≡ 2 (mod 3)
⇒ (1 + 22 + ... + 22010) ∙ 3 + 8 ≡ 0 + 2 = 2 (mod 3)
⇒ (1 + 22 + ... + 22010) ∙ 3 + 8 chia 3 dư 2
⇒ (1 + 22 + ... + 22010) ∙ 3 + 8 = 3k + 2
⇒ A = 3k + 2
Mà số chính phương chỉ có thể có dạng 3k hoặc 3k + 1
⇒ A không phải là số chính phương
Vậy A không phải là số chính phương.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: BC = , góc A bằng 60°.
Theo định lý sin:
Lời giải
Muốn cộng hai luỹ thừa cùng cơ số, ta cộng số mũ với nhau và giữ nguyên cơ số.
am + an = am + n.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.