Câu hỏi:
25/06/2023 352
Cho A = 1 + 3 + 32 + 33 + ... + 330. Tìm chữ số tận cùng của A, từ đó suy ra A không phải là số chính phương.
Quảng cáo
Trả lời:
A = 1 + 3 + 32 + 33 + ... + 330
= (1 + 3 + 32 + 33) + (34 + 35 + 36 + 37) + ... + (324 + 325 + 326 + 327) + (328 + 329 + 330)
= 1 (1 + 3 + 32 + 33) + 34 (1 + 3 + 32 + 33) + ... + 324 (1 + 3 + 32 + 33) + (328 + 329 + 330)
= 40 + 34 ∙ 40 + ... + 324 ∙ 40 + (328 + 329 + 330)
= 40 ∙ (1 + 34 + 324) + (328 + 329 + 330)
Nhận xét: 40 ∙ (1+ 34 + 324) có tận cùng là 0
328 = (34)7 = 817 = (...1)
329 = 328 ∙ 3 = (...1) ∙ 3 = (...3)
330 = 328 ∙ 32 = (...1) ∙ 9 = (...9)
⇒ A = (...0) + (...1) + (...3) + (...9) = (...3)
A có tận cùng là chữ số 3 nên A không thể là số chính phương.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: BC = , góc A bằng 60°.
Theo định lý sin:
Lời giải
Ta có 26 cách chọn chữ cái để xếp ở vị trí đầu tiên.
Tương tự có 9 cách chọn chữ số cho vị trí thứ 2 và có 10 cách chọn chữ số cho mỗi vị trí trong bốn vị trí còn lại.
Theo quy tắc nhân , ta có tất cả:
26 ∙ 9 ∙ 10 ∙ 10 ∙ 10 ∙ 10 = 2340000 (biển số).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.