Câu hỏi:

30/06/2023 3,566

Cho tam giác ABC có các góc thỏa mãn \(\frac{{\sin A}}{1} = \frac{{\sin B}}{2} = \frac{{\sin C}}{{\sqrt 3 }}\). Tính số đo các góc của tam giác.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Áp dụng định lí sin cho tam giác ABC, ta được: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R\).

Suy ra \(\sin A = \frac{a}{{2R}};\,\,\sin B = \frac{b}{{2R}};\,\,\sin C = \frac{c}{{2R}}\).

Theo đề, ta có: \(\frac{{\sin A}}{1} = \frac{{\sin B}}{2} = \frac{{\sin C}}{{\sqrt 3 }}\).

\( \Rightarrow \frac{{\frac{a}{{2R}}}}{1} = \frac{{\frac{b}{{2R}}}}{2} = \frac{{\frac{c}{{2R}}}}{{\sqrt 3 }} \Rightarrow \frac{a}{1} = \frac{b}{2} = \frac{c}{{\sqrt 3 }}\).

Đặt \(\frac{a}{1} = \frac{b}{2} = \frac{c}{{\sqrt 3 }} = t\).

Suy ra a = t; b = 2t; \(c = t\sqrt 3 \).

Khi đó a2 = t2; b2 = 4t2; c2 = 3t2.

Ta thấy t2 + 3t2 = 4t2.

Suy ra a2 + c2 = b2.

Áp dụng định lí Pythagore đảo, ta có tam giác ABC vuông tại B.

Do đó sinB = 1.

Vì vậy \(\frac{{\sin A}}{1} = \frac{1}{2} = \frac{{\sin C}}{{\sqrt 3 }}\).

Suy ra \(\left\{ \begin{array}{l}\sin A = \frac{1}{2}\\\sin C = \frac{{\sqrt 3 }}{2}\end{array} \right.\)

Do đó \(\left\{ \begin{array}{l}\widehat A = 30^\circ \\\widehat C = 60^\circ \end{array} \right.\)

Vậy \(\widehat A = 30^\circ ;\,\,\widehat B = 90^\circ ;\,\,\widehat C = 60^\circ \).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC vuông tại A. Về phía ngoài tam giác ABC, vẽ hai tam giác vuông cân ADB (DA = DB) và ACE (EA = EC). Gọi M là trung điểm BC, I là giao điểm của DM với AB, K là giao điểm của EM với AC. Chứng minh:

a) Ba điểm D, A, E thẳng hàng.

b) Tứ giác IAKM là hình chữ nhật.

c) Tam giác DME là tam giác vuông cân.

Xem đáp án » 30/06/2023 17,985

Câu 2:

Số tập con của tập hợp A = {x ℝ | 3(x2 + x)2 – 2x2 – 2x = 0} là bao nhiêu?

Xem đáp án » 30/06/2023 15,673

Câu 3:

Cho tam giác ABC vuông cân tại A. Trên các cạnh góc vuông AB, AC lấy D và E sao cho AD = AE. Qua D vẽ đường thẳng vuông góc với BE cắt BC ở K. Qua A vẽ đường thẳng vuông góc với BE cắt BC ở H. Gọi M là giao điểm của DK và AC. Chứng minh rằng:

a) ∆BAE = ∆CAD;

b) ∆MDC cân;

c) HK = HC.

Xem đáp án » 30/06/2023 9,560

Câu 4:

Cho tập hợp A = {1; 2; 3; 4; 5; 6; 7; 8}. Hỏi từ tập A có thể lập được bao nhiêu số tự nhiên có 6 chữ số khác nhau và phải có mặt các chữ số 1, 2, 3 sao cho chúng không đứng cạnh nhau?

Xem đáp án » 30/06/2023 7,191

Câu 5:

Cho a, b, c > 0 thỏa mãn abc = 1. Chứng minh rằng:

\(\frac{1}{{{a^3}\left( {b + c} \right)}} + \frac{1}{{{b^3}\left( {c + a} \right)}} + \frac{1}{{{c^3}\left( {a + b} \right)}} \ge \frac{3}{2}\).

Xem đáp án » 30/06/2023 6,121

Câu 6:

Gọi S là tập hợp các giá trị của m để bất phương trình x2 – 2mx + 5m – 8 ≤ 0 có tập nghiệm là [a; b] sao cho b – a = 4. Tổng tất cả các phần tử của S là

Xem đáp án » 30/06/2023 5,807

Câu 7:

Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA.

a) Tứ giác MNPQ là hình gì? Vì sao?

b) Để tứ giác MNPQ là hình vuông thì tứ giác ABCD cần có điều kiện gì?

c) Cho AC = 6 cm, BD = 8 cm. Hãy tính diện tích tứ giác MNPQ.

Xem đáp án » 30/06/2023 4,785
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua