Câu hỏi:
30/06/2023 233
Cho (O; R) và (O’; R’) tiếp xúc ngoài tại A. Kẻ dây cung AM của (O) và dây cung AN của (O’) sao cho AM vuông góc với AN.
a) Chứng minh OM // O’N.
b) Xác định vị trí của AM và AN để diện tích tứ giác OMNO’ lớn nhất.
Cho (O; R) và (O’; R’) tiếp xúc ngoài tại A. Kẻ dây cung AM của (O) và dây cung AN của (O’) sao cho AM vuông góc với AN.
a) Chứng minh OM // O’N.
b) Xác định vị trí của AM và AN để diện tích tứ giác OMNO’ lớn nhất.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:

a) Vì OM = OA = R nên tam giác OAM cân tại O.
Suy ra \(\widehat {AOM} = 180^\circ - 2.\widehat {OAM}\).
Chứng minh tương tự, ta được \(\widehat {AO'N} = 180^\circ - 2.\widehat {O'AN}\).
Ta có \(\widehat {OAM} + \widehat {MAN} + \widehat {NAO'} = 180^\circ \) (kề bù).
Suy ra \(\widehat {OAM} + \widehat {NAO'} = 180^\circ - \widehat {MAN} = 180^\circ - 90^\circ = 90^\circ \).
Ta có \(\widehat {AOM} + \widehat {AO'N} = 180^\circ - 2.\widehat {OAM} + 180^\circ - 2.\widehat {O'AN}\).
\( = 360^\circ - 2.\left( {\widehat {OAM} + \widehat {O'AN}} \right) = 360^\circ - 2.90^\circ = 180^\circ \).
Mà hai góc \(\widehat {AOM},\widehat {AO'N}\) ở vị trí trong cùng phía.
Vậy OM // O’N.
b) Gọi H là hình chiếu vuông góc của O lên O’N.
Vì OM // O’N nên tứ giác OMNO’ là hình thang.
Suy ra \({S_{OMNO'}} = \frac{{OH.\left( {OM + O'N} \right)}}{2} = \frac{{OH.\left( {R + R'} \right)}}{2}\).
\[ \le \frac{{OO'.\left( {R + R'} \right)}}{2} = \frac{{\left( {R + R'} \right).\left( {R + R'} \right)}}{2} = \frac{{{{\left( {R + R'} \right)}^2}}}{2}\].
Dấu “=” xảy ra ⇔ H ≡ O’ hay OO’ ⊥ O’N, OO’ ⊥ OM.
Khi đó \(\widehat {AOM} = 90^\circ \). Suy ra \(\widehat {OAM} = 45^\circ \).
Chứng minh tương tự, ta được \(\widehat {O'AN} = 45^\circ \).
Vậy M ở vị trí sao cho tam giác OAM vuông cân tại O, N ở vị trí sao cho tam giác O’AN vuông cân tại O’ thì diện tích tứ giác OMNO’ lớn nhất.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Ta có tam giác ADB vuông cân tại D.
Suy ra \(\widehat {DAB} = 45^\circ \).
Chứng minh tương tự, ta được \(\widehat {CAE} = 45^\circ \).
Ta có \(\widehat {DAB} + \widehat {BAC} + \widehat {CAE} = 45^\circ + 90^\circ + 45^\circ = 180^\circ \).
Vậy ba điểm D, A, E thẳng hàng.
b) Tam giác ABC vuông tại A có AM là đường trung tuyến.
Suy ra MA = MB = MC.
Do đó M nằm trên đường trung trực của đoạn AB (1)
Chứng minh tương tự, ta được D nằm trên đường trung trực của đoạn AB (2)
Từ (1), (2), suy ra DM là đường trung trực của đoạn AB.
Mà DM cắt AB tại I.
Do đó DM ⊥ AB tại I.
Chứng minh tương tự, ta được ME ⊥ AC tại K.
Tứ giác IAKM, có: \(\widehat {MIA} = \widehat {IAK} = \widehat {AKM} = 90^\circ \).
Vậy tứ giác IAKM là hình chữ nhật.
c) Tam giác ADB vuông cân tại D có DI là đường cao.
Suy ra DI cũng là đường phân giác của tam giác ADB.
Do đó \[\widehat {ADI} = 90^\circ :2 = 45^\circ \].
Mà \(\widehat {DME} = 90^\circ \) (do tứ giác IAKM là hình chữ nhật).
Vậy tam giác DME là tam giác vuông cân tại M.
Lời giải
Ta có 3(x2 + x)2 – 2x2 – 2x = 0.
⇔ 3(x2 + x)2 – 2(x2 + x) = 0.
⇔ (x2 + x)[3(x2 + x) – 2] = 0.
\[ \Leftrightarrow \left[ \begin{array}{l}{x^2} + x = 0\\3{x^2} + 3x - 2 = 0\end{array} \right.\]
\[ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = - 1\\x = \frac{{ - 3 \pm \sqrt {33} }}{6}\end{array} \right.\]
Vì vậy \(A = \left\{ {0; - 1;\frac{{ - 3 \pm \sqrt {33} }}{6}} \right\}\).
Vậy số tập con của tập A là 23 = 8 tập con.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.