Câu hỏi:

30/06/2023 544

Cho tam giác ABC vuông tại A, đường cao AH. Gọi D và E lần lượt là các điểm đối xứng với H qua AB và AC.

a) Chứng minh ba điểm A, D, E thẳng hàng.

b) Tứ giác BDEC là hình thang vuông.

c) BC = BD + CE.

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D và E lần lượt là các điểm (ảnh 1)

a) Ta có D là điểm đối xứng với H qua AB (giả thiết).

Suy ra AB là đường trung trực của đoạn DH.

Do đó AD = AH.

Tam giác ADH cân tại H (do AD = AH) có AB là đường trung trực.

Suy ra AB cũng là đường phân giác của tam giác ADH.

Do đó \(\widehat {DAB} = \widehat {BAH}\).

Chứng minh tương tự, ta được \(\widehat {HAC} = \widehat {CAE}\).

Ta có \(\widehat {DAE} = \widehat {DAB} + \widehat {BAH} + \widehat {HAC} + \widehat {CAE} = 2\widehat {BAH} + 2\widehat {HAC}\).

\( = 2\left( {\widehat {BAH} + \widehat {HAC}} \right) = 2\widehat {BAC} = 2.90^\circ = 180^\circ \).

Vậy ba điểm D, A, E thẳng hàng.

b) Ta có A, D, B lần lượt là các điểm đối xứng với các điểm A, H, B qua AB.

Suy ra ∆ADB = ∆AHB.

Do đó \(\widehat {ADB} = \widehat {AHB} = 90^\circ \).

Vì vậy BD DE   (1)

Chứng minh tương tự, ta được CE DE      (2)

Từ (1), (2), suy ra BD // CE và \(\widehat {BDE} = 90^\circ \).

Vậy tứ giác BDEC là hình thang vuông.

c) Ta có AB là đường trung trực của đoạn DH (chứng minh trên).

Suy ra BD = BH.

Chứng minh tương tự, ta được CH = CE.

Ta có BC = BH + HC = BD + CE.

Vậy BC = BD + CE.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC vuông tại A. Về phía ngoài tam giác ABC, vẽ hai tam giác vuông cân ADB (DA = DB) và ACE (EA = EC). Gọi M là trung điểm BC, I là giao điểm của DM với AB, K là giao điểm của EM với AC. Chứng minh:

a) Ba điểm D, A, E thẳng hàng.

b) Tứ giác IAKM là hình chữ nhật.

c) Tam giác DME là tam giác vuông cân.

Xem đáp án » 30/06/2023 16,022

Câu 2:

Số tập con của tập hợp A = {x ℝ | 3(x2 + x)2 – 2x2 – 2x = 0} là bao nhiêu?

Xem đáp án » 30/06/2023 15,497

Câu 3:

Cho tam giác ABC vuông cân tại A. Trên các cạnh góc vuông AB, AC lấy D và E sao cho AD = AE. Qua D vẽ đường thẳng vuông góc với BE cắt BC ở K. Qua A vẽ đường thẳng vuông góc với BE cắt BC ở H. Gọi M là giao điểm của DK và AC. Chứng minh rằng:

a) ∆BAE = ∆CAD;

b) ∆MDC cân;

c) HK = HC.

Xem đáp án » 30/06/2023 6,686

Câu 4:

Cho a, b, c > 0 thỏa mãn abc = 1. Chứng minh rằng:

\(\frac{1}{{{a^3}\left( {b + c} \right)}} + \frac{1}{{{b^3}\left( {c + a} \right)}} + \frac{1}{{{c^3}\left( {a + b} \right)}} \ge \frac{3}{2}\).

Xem đáp án » 30/06/2023 4,895

Câu 5:

Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA.

a) Tứ giác MNPQ là hình gì? Vì sao?

b) Để tứ giác MNPQ là hình vuông thì tứ giác ABCD cần có điều kiện gì?

c) Cho AC = 6 cm, BD = 8 cm. Hãy tính diện tích tứ giác MNPQ.

Xem đáp án » 30/06/2023 4,388

Câu 6:

Cho tập hợp A = {1; 2; 3; 4; 5; 6; 7; 8}. Hỏi từ tập A có thể lập được bao nhiêu số tự nhiên có 6 chữ số khác nhau và phải có mặt các chữ số 1, 2, 3 sao cho chúng không đứng cạnh nhau?

Xem đáp án » 30/06/2023 3,717

Câu 7:

Cho tam giác ABC có các góc thỏa mãn \(\frac{{\sin A}}{1} = \frac{{\sin B}}{2} = \frac{{\sin C}}{{\sqrt 3 }}\). Tính số đo các góc của tam giác.

Xem đáp án » 30/06/2023 3,369

Bình luận


Bình luận