Câu hỏi:

30/06/2023 4,406

Cho tam giác ABC có \(\widehat A = 60^\circ \). Các tia phân giác của \(\widehat B\)\(\widehat C\) cắt nhau ở I, cắt cạnh AC, AB ở D và E. Tia phân giác của \(\widehat {BIC}\) cắt BC ở F.

a) Tính \(\widehat {BIC}\).

b) Chứng minh ID = IE = IF.

c) Chứng minh tam giác DEF đều.

d) Chứng minh I là giao điểm các đường phân giác của hai tam giác ABC và DEF.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC có góc A = 60 độ. Các tia phân giác của góc B và góc C (ảnh 1)

a) Ta có BI, CI lần lượt là tia phân giác của \(\widehat {ABC}\)\(\widehat {ACB}\).

Suy ra \(2\widehat {IBC} = \widehat {ABC}\)\(2\widehat {ICB} = \widehat {ACB}\).

∆ABC, có: \(\widehat {BAC} + \widehat {ABC} + \widehat {ACB} = 180^\circ \) (định lí tổng ba góc trong một tam giác).

Suy ra \(\widehat {ABC} + \widehat {ACB} = 180^\circ - \widehat {BAC} = 180^\circ - 60^\circ = 120^\circ \).

Do đó \(2\left( {\widehat {IBC} + \widehat {ICB}} \right) = 120^\circ \).

Vì vậy \(\widehat {IBC} + \widehat {ICB} = 120^\circ :2 = 60^\circ \).

∆BIC, có: \(\widehat {BIC} = 180^\circ - \left( {\widehat {IBC} + \widehat {ICB}} \right) = 180^\circ - 60^\circ = 120^\circ \).

Vậy \(\widehat {BIC} = 120^\circ \).

b) Ta có \(\widehat {EIB} + \widehat {BIC} = 180^\circ \) (kề bù).

Suy ra \(\widehat {EIB} = 180^\circ - \widehat {BIC} = 180^\circ - 120^\circ = 60^\circ \).

Chứng minh tương tự, ta được \(\widehat {DIC} = 60^\circ \).

Ta có IF là tia phân giác của \(\widehat {BIC}\).

Suy ra \(\widehat {BIF} = \widehat {FIC} = \frac{{\widehat {BIC}}}{2} = 60^\circ \).

Xét ∆IFC và ∆IDC, có:

IC là cạnh chung;

\(\widehat {ICF} = \widehat {ICD}\) (CI là tia phân giác của \(\widehat {FCD}\));

\(\widehat {FIC} = \widehat {DIC}\,\,\left( { = 60^\circ } \right)\).

Do đó ∆IFC = ∆IDC (g.c.g).

Suy ra IF = ID (cặp cạnh tương ứng)     (1)

Chứng minh tương tự, ta được: IE = IF     (2)

Từ (1), (2), ta thu được ID = IE = IF.

c) Ta có:

\(\widehat {EIF} = \widehat {EIB} + \widehat {BIF} = 60^\circ + 60^\circ = 120^\circ \).

\(\widehat {DIF} = \widehat {DIC} + \widehat {CIF} = 60^\circ + 60^\circ = 120^\circ \).

Xét ∆EIF và ∆DIF, có:

IF là cạnh chung;

\(\widehat {EIF} = \widehat {DIF}\,\,\left( { = 120^\circ } \right)\);

IE = ID (kết quả câu b).

Do đó ∆EIF = ∆DIF (c.g.c).

Suy ra EF = DF (cặp cạnh tương ứng)       (3)

Ta có \(\widehat {DIE} = \widehat {BIC} = 120^\circ \) (đối đỉnh).

Xét ∆DIE và ∆FIE, có:

EI là cạnh chung;

ID = IF (kết quả câu b);

\(\widehat {DIE} = \widehat {FIE}\,\,\left( { = 120^\circ } \right)\).

Do đó ∆DIE = ∆FIE (c.g.c).

Suy ra DE = EF (cặp cạnh tương ứng)       (4)

Từ (3), (4), suy ra DE = EF = DF.

Vậy tam giác DEF đều.

d) Tam giác ABC có hai đường phân giác BD, CE cắt nhau tại I.

Suy ra I là giao điểm của ba đường phân giác của tam giác ABC    (5)

Ta có ∆EIF = ∆DIF (chứng minh trên).

Suy ra \(\widehat {EFI} = \widehat {DFI}\) (cặp góc tương ứng).

Do đó FI là đường phân giác của tam giác DEF.

Chứng minh tương tự, ta được EI là đường phân giác của tam giác DEF.

Tam giác DEF có hai đường phân giác FI, EI cắt nhau tại I.

Suy ra I là giao điểm của ba đường phân giác của tam giác DEF    (6)

Từ (5), (6), ta thu được I là giao điểm các đường phân giác của hai tam giác ABC và DEF.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC vuông tại A. Về phía ngoài tam giác ABC, vẽ hai tam giác vuông (ảnh 1)

a) Ta có tam giác ADB vuông cân tại D.

Suy ra \(\widehat {DAB} = 45^\circ \).

Chứng minh tương tự, ta được \(\widehat {CAE} = 45^\circ \).

Ta có \(\widehat {DAB} + \widehat {BAC} + \widehat {CAE} = 45^\circ + 90^\circ + 45^\circ = 180^\circ \).

Vậy ba điểm D, A, E thẳng hàng.

b) Tam giác ABC vuông tại A có AM là đường trung tuyến.

Suy ra MA = MB = MC.

Do đó M nằm trên đường trung trực của đoạn AB        (1)

Chứng minh tương tự, ta được D nằm trên đường trung trực của đoạn AB        (2)

Từ (1), (2), suy ra DM là đường trung trực của đoạn AB.

Mà DM cắt AB tại I.

Do đó DM AB tại I.

Chứng minh tương tự, ta được ME AC tại K.

Tứ giác IAKM, có: \(\widehat {MIA} = \widehat {IAK} = \widehat {AKM} = 90^\circ \).

Vậy tứ giác IAKM là hình chữ nhật.

c) Tam giác ADB vuông cân tại D có DI là đường cao.

Suy ra DI cũng là đường phân giác của tam giác ADB.

Do đó \[\widehat {ADI} = 90^\circ :2 = 45^\circ \].

\(\widehat {DME} = 90^\circ \) (do tứ giác IAKM là hình chữ nhật).

Vậy tam giác DME là tam giác vuông cân tại M.

Lời giải

Ta có 3(x2 + x)2 – 2x2 – 2x = 0.

3(x2 + x)2 – 2(x2 + x) = 0.

(x2 + x)[3(x2 + x) – 2] = 0.

\[ \Leftrightarrow \left[ \begin{array}{l}{x^2} + x = 0\\3{x^2} + 3x - 2 = 0\end{array} \right.\]

\[ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = - 1\\x = \frac{{ - 3 \pm \sqrt {33} }}{6}\end{array} \right.\]

Vì vậy \(A = \left\{ {0; - 1;\frac{{ - 3 \pm \sqrt {33} }}{6}} \right\}\).

Vậy số tập con của tập A là 23 = 8 tập con.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP