Câu hỏi:
30/06/2023 677Cho a, b, c đôi một khác nhau và khác 0 thỏa mãn (a + b + c)2 = a2 + b2 + c2. Tính giá trị biểu thức \(A = \frac{{{a^2}}}{{{a^2} + 2bc}} + \frac{{{b^2}}}{{{b^2} + 2ca}} + \frac{{{c^2}}}{{{c^2} + 2ab}}\).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có (a + b + c)2 = a2 + b2 + c2.
⇔ a2 + b2 + c2 + 2(ab + bc + ca) = a2 + b2 + c2.
⇔ 2(ab + bc + ca) = 0.
⇔ ab + bc + ca = 0.
⇔ bc = –ab – ca.
Suy ra \(\frac{{{a^2}}}{{{a^2} + 2bc}} = \frac{{{a^2}}}{{{a^2} + bc - ab - ac}} = \frac{{{a^2}}}{{a\left( {a - b} \right) - c\left( {a - b} \right)}} = \frac{{{a^2}}}{{\left( {a - c} \right)\left( {a - b} \right)}}\).
Chứng minh tương tự, ta được \(\frac{{{b^2}}}{{{b^2} + 2ca}} = \frac{{{b^2}}}{{\left( {b - a} \right)\left( {b - c} \right)}}\); \(\frac{{{c^2}}}{{{c^2} + 2ab}} = \frac{{{c^2}}}{{\left( {a - c} \right)\left( {b - c} \right)}}\).
Khi đó ta có \(A = \frac{{{a^2}}}{{{a^2} + 2bc}} + \frac{{{b^2}}}{{{b^2} + 2ca}} + \frac{{{c^2}}}{{{c^2} + 2ab}}\).
\( = \frac{{{a^2}}}{{\left( {a - c} \right)\left( {a - b} \right)}} + \frac{{{b^2}}}{{\left( {b - a} \right)\left( {b - c} \right)}} + \frac{{{c^2}}}{{\left( {a - c} \right)\left( {b - c} \right)}}\).
\( = \frac{{{a^2}\left( {b - c} \right) - {b^2}\left( {a - c} \right) + {c^2}\left( {a - b} \right)}}{{\left( {a - c} \right)\left( {a - b} \right)\left( {b - c} \right)}}\).
\( = \frac{{{a^2}b - {a^2}c - {b^2}a + {b^2}c + {c^2}\left( {a - b} \right)}}{{\left( {a - c} \right)\left( {a - b} \right)\left( {b - c} \right)}}\).
\( = \frac{{ab\left( {a - b} \right) - c\left( {a - b} \right)\left( {a + b} \right) + {c^2}\left( {a - b} \right)}}{{\left( {a - c} \right)\left( {a - b} \right)\left( {b - c} \right)}}\).
\( = \frac{{\left( {a - b} \right)\left( {ab - ca - cb + {c^2}} \right)}}{{\left( {a - c} \right)\left( {a - b} \right)\left( {b - c} \right)}}\).
\( = \frac{{\left( {a - b} \right)\left( {b - c} \right)\left( {a - c} \right)}}{{\left( {a - c} \right)\left( {a - b} \right)\left( {b - c} \right)}} = 1\).
Vậy A = 1.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho đường tròn (O) và điểm A bên ngoài đường tròn, từ A vẽ tiếp tuyến AB với đường tròn (B là tiếp điểm). Kẻ đường kính BC của đường tròn (O). AC cắt đường tròn (O) tại D (D khác C).
a) Chứng minh rằng BD vuông góc AC và AB2 = AD.AC.
b) Từ C vẽ dây CE // OA. BE cắt OA tại H. Chứng minh rằng H là trung điểm của BE và AE là tiếp tuyến.
c) Chứng minh rằng \(\widehat {OCH} = \widehat {OAC}\).
d) Tia OA cắt đường tròn tại F. Chứng minh rằng FA.CH = HF.CA.
Câu 2:
Cho nửa đường tròn tâm O, đường kính AB = 2R. Kẻ hai tiếp tuyến Ax, By của nửa đường tròn (O) tại A và B (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng có bờ là đường thẳng AB). Qua điểm M thuộc nửa đường tròn (M khác A và B), kẻ tiếp tuyến với nửa đường tròn, cắt tia Ax và By theo thứ tự tại C và D.
a) Chứng minh tam giác COD vuông tại O.
b) Chứng minh AC.BD = R2.
c) Kẻ MH vuông góc với AB (H ∈ AB). Chứng minh rằng BC đi qua trung điểm của đoạn MH.
Câu 3:
Tìm một số tự nhiên có 3 chữ số, biết rằng khi viết thêm chữ số 2 vào bên phải số đó thì nó tăng 4106 đơn vị.
Câu 4:
Cho tam giác ABC có BC = a, CA = b, AB = c thỏa mãn \[\frac{{a + b}}{6} = \frac{{b + c}}{5} = \frac{{c + a}}{7}\]. Tính giá trị của biểu thức T = cosA + 2cosB + 3cosC.
Câu 5:
Lấy điểm A trên (O; R), vẽ tiếp tuyến Ax. Trên Ax lấy điểm B. Trên (O; R) lấy điểm C sao cho BC = AB.
a) Chứng minh CB là tiếp tuyến của (O).
b) Vẽ đường kính AD của (O), kẻ CK vuông góc với AD. Chứng minh rằng CD // OB và BC.CD = CK.OB.
c) Lấy điểm M trên cung nhỏ AC của (O). Vẽ tiếp tuyến tại M cắt AB, BC lần lượt tại E, F. Vẽ đường tròn tâm I nội tiếp ∆BEF. Chứng minh .
Câu 6:
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, cạnh SA vuông góc với đáy và góc tạo bởi SB với đáy (ABC) bằng 60°. Tính thể tích khối chóp S.ABC tính theo a.
Câu 7:
Cho đường thẳng (d): y = 2x + 3 và đường thẳng (d’): y = (m + 1)x + 5 (m là tham số, m ≠ –1).
a) Vẽ đường thẳng (d) trên hệ trục tọa độ Oxy.
b) Tìm m để đường thẳng (d) song song với đường thẳng (d’).
c) Tìm m để hai đường thẳng (d) và (d’) cắt nhau tại điểm A nằm bên trái trục tung.
về câu hỏi!