Câu hỏi:
30/06/2023 782Cho đường tròn (O) và điểm A ngoài (O). Qua A kẻ các tiếp tuyến AB, AC với (O) trong đó B, C là các tiếp điểm. Lấy M là điểm thuộc cung nhỏ BC. Tiếp tuyến qua M với (O) cắt AB, AC lần lượt tại D và E. Chứng minh:
a) Chu vi tam giác ADE bằng 2AB.
b) \(\widehat {DOE} = \frac{1}{2}\widehat {BOC}\).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Ta có BD, MD là hai tiếp tuyến của (O).
Suy ra DB = DM (tính chất hai tiếp tuyến cắt nhau).
Chứng minh tương tự, ta được ME = CE và AB = AC.
Ta có chu vi tam giác ADE là: AD + DE + EA = AD + DM + ME + AE
= AD + DB + CE + AE = AB + AC = 2AB.
Vậy ta có điều phải chứng minh.
b) Ta có , MD là hai tiếp tuyến của (O).
Suy ra OD là tia phân giác của \(\widehat {BOM}\) (tính chất hai tiếp tuyến cắt nhau).
Do đó \(\widehat {DOM} = \frac{1}{2}\widehat {BOM}\).
Chứng minh tương tự, ta được \(\widehat {MOE} = \frac{1}{2}\widehat {MOC}\).
Ta có \(\widehat {DOE} = \widehat {DOM} + \widehat {MOE} = \frac{1}{2}\widehat {BOM} + \frac{1}{2}\widehat {MOC} = \frac{1}{2}\left( {\widehat {BOM} + \widehat {MOC}} \right) = \frac{1}{2}\widehat {BOC}\).
Vậy ta có điều phải chứng minh.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho đường tròn (O) và điểm A bên ngoài đường tròn, từ A vẽ tiếp tuyến AB với đường tròn (B là tiếp điểm). Kẻ đường kính BC của đường tròn (O). AC cắt đường tròn (O) tại D (D khác C).
a) Chứng minh rằng BD vuông góc AC và AB2 = AD.AC.
b) Từ C vẽ dây CE // OA. BE cắt OA tại H. Chứng minh rằng H là trung điểm của BE và AE là tiếp tuyến.
c) Chứng minh rằng \(\widehat {OCH} = \widehat {OAC}\).
d) Tia OA cắt đường tròn tại F. Chứng minh rằng FA.CH = HF.CA.
Câu 2:
Cho nửa đường tròn tâm O, đường kính AB = 2R. Kẻ hai tiếp tuyến Ax, By của nửa đường tròn (O) tại A và B (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng có bờ là đường thẳng AB). Qua điểm M thuộc nửa đường tròn (M khác A và B), kẻ tiếp tuyến với nửa đường tròn, cắt tia Ax và By theo thứ tự tại C và D.
a) Chứng minh tam giác COD vuông tại O.
b) Chứng minh AC.BD = R2.
c) Kẻ MH vuông góc với AB (H ∈ AB). Chứng minh rằng BC đi qua trung điểm của đoạn MH.
Câu 3:
Tìm một số tự nhiên có 3 chữ số, biết rằng khi viết thêm chữ số 2 vào bên phải số đó thì nó tăng 4106 đơn vị.
Câu 4:
Cho tam giác ABC có BC = a, CA = b, AB = c thỏa mãn \[\frac{{a + b}}{6} = \frac{{b + c}}{5} = \frac{{c + a}}{7}\]. Tính giá trị của biểu thức T = cosA + 2cosB + 3cosC.
Câu 5:
Lấy điểm A trên (O; R), vẽ tiếp tuyến Ax. Trên Ax lấy điểm B. Trên (O; R) lấy điểm C sao cho BC = AB.
a) Chứng minh CB là tiếp tuyến của (O).
b) Vẽ đường kính AD của (O), kẻ CK vuông góc với AD. Chứng minh rằng CD // OB và BC.CD = CK.OB.
c) Lấy điểm M trên cung nhỏ AC của (O). Vẽ tiếp tuyến tại M cắt AB, BC lần lượt tại E, F. Vẽ đường tròn tâm I nội tiếp ∆BEF. Chứng minh .
Câu 6:
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, cạnh SA vuông góc với đáy và góc tạo bởi SB với đáy (ABC) bằng 60°. Tính thể tích khối chóp S.ABC tính theo a.
Câu 7:
Cho đường thẳng (d): y = 2x + 3 và đường thẳng (d’): y = (m + 1)x + 5 (m là tham số, m ≠ –1).
a) Vẽ đường thẳng (d) trên hệ trục tọa độ Oxy.
b) Tìm m để đường thẳng (d) song song với đường thẳng (d’).
c) Tìm m để hai đường thẳng (d) và (d’) cắt nhau tại điểm A nằm bên trái trục tung.
về câu hỏi!