Câu hỏi:

30/06/2023 581

Cho tam giác ABC cân tại A, đường cao AD, O là trung điểm của AC, điểm E đối xứng với điểm D qua điểm O.

a) Chứng minh tứ giác AECD là hình chữ nhật.

b) Gọi I là trung điểm của AD, chứng tỏ I là trung điểm của BE.

c) Cho AB = 10 cm, BC = 12 cm. Tính diện tích tam giác OAD.

d) Đường thẳng OI cắt AB tại K. Tìm điều kiện của tam giác ABC để tứ giác AEDK là hình thang cân.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC cân tại A, đường cao AD, O là trung điểm của AC, điểm E (ảnh 1)

a) Tứ giác AECD, có hai đường chéo AC và DE cắt nhau tại O.

Mà O là trung điểm của AC (giả thiết) và O cũng là trung điểm của DE (điểm E đối xứng với điểm D qua điểm O).

Suy ra tứ giác AECD là hình bình hành.

Lại có \[\widehat {ADC} = 90^\circ \] (AD BC).

Vậy tứ giác AECD là hình chữ nhật.

b) Tam giác ABC cân tại A có AD vừa là đường cao, vừa là đường trung tuyến.

Suy ra D là trung điểm BC.

Do đó BD = CD    (1)

Vì AECD là hình chữ nhật nên AE // CD và AE = CD    (2)

Từ (1), (2), suy ra AE = BD.

Tứ giác AEDB, có: AE // BD và AE = CD (chứng minh trên).

Suy ra tứ giác AEDB là hình bình hành.

Mà I là trung điểm của AD.

Vậy I cũng là trung điểm của BE.

c) Ta có D là trung điểm BC. Suy ra \(BD = CD = \frac{{BC}}{2} = \frac{{12}}{2} = 6\) (cm).

Tam giác ACD có O, I lần lượt là trung điểm của AC, AD.

Suy ra OI là đường trung bình của tam giác ACD.

Do đó OI // CD và \(OI = \frac{{CD}}{2} = \frac{6}{2} = 3\) (cm).

Tam giác ABD vuông tại D: AD2 = AB2 – BD2 = 102 – 62 = 64.

Suy ra AD = 8 (cm).

Ta có OI // CD (chứng minh trên) và CD AD (tam giác ABC có AD là đường cao).

Suy ra OI AD.

Diện tích tam giác OAD là: \({S_{\Delta OAD}} = \frac{1}{2}OI.AD = \frac{1}{2}.3.8 = 12\,\,\left( {c{m^2}} \right)\).

Vậy diện tích tam giác OAD bằng 12 cm2.

d) Vì tứ giác AEDB là hình bình hành nên AK // DE.

Suy ra tứ giác AEDK là hình thang.

Do đó để AKDE là hình thang cân thì \(\widehat {AED} = \widehat {KDE}\) (hai góc kề một đáy bằng nhau).

Ta có tứ giác AEDB là hình bình hành (chứng minh trên).

Suy ra OD // AK   (3)

Tam giác ABC có OK // BC (chứng minh trên) và O là trung điểm AC (giả thiết).

Suy ra OK là đường trung bình của tam giác ABC.

Do đó K là trung điểm của AB.

Tam giác ABC có D, K lần lượt là trung điểm của BC, AB.

Suy ra DK là đường trung bình của tam giác ABC.

Do đó DK // AO   (4)

Từ (3), (4), suy ra tứ giác AODK là hình bình hành.

Khi đó \(\widehat {KAO} = \widehat {KDO}\) (hai góc đối nhau).

\(\widehat {AED} = \widehat {ABD}\) (hai góc đối nhau trong hình bình hành AEDB).

Do đó nếu \(\widehat {AED} = \widehat {KDE}\) thì \(\widehat {ABD} = \widehat {KAO}\).

\(\widehat {ABC} = \widehat {ACB}\) (tam giác ABC cân tại A).

Suy ra \[\widehat {BAC} = \widehat {ABC} = \widehat {ACB}\].

Khi đó tam giác ABC đều.

Vậy tam giác ABC là tam giác đều thì tứ giác AEDK là hình thang cân.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho nửa đường tròn tâm O, đường kính AB = 2R. Kẻ hai tiếp tuyến Ax, By (ảnh 1)

a) Đường tròn (O) có hai tiếp tuyến AC, MC cắt nhau tại C.

Suy ra OC là tia phân giác của \(\widehat {AOM}\) (tính chất hai tiếp tuyến cắt nhau).

Do đó \(2\widehat {AOC} = 2\widehat {COM} = \widehat {AOM}\).

Chứng minh tương tự, ta được \(2\widehat {MOD} = 2\widehat {DOB} = \widehat {MOB}\).

Ta có \(\widehat {AOM} + \widehat {MOB} = 180^\circ \) (kề bù).

Suy ra \(2\widehat {COM} + 2\widehat {MOD} = 180^\circ \).

Khi đó \(2\left( {\widehat {COM} + \widehat {MOD}} \right) = 180^\circ \).

Vì vậy \(\widehat {COD} = 180^\circ :2 = 90^\circ \).

Vậy tam giác COD vuông tại O.

b) Đường tròn (O) có hai tiếp tuyến AC, MC cắt nhau tại C.

Suy ra AC = MC (tính chất hai tiếp tuyến cắt nhau).

Chứng minh tương tự, ta được DM = BD.

Ta có CD là tiếp tuyến của (O) có M là tiếp điểm. Suy ra OM CD.

Tam giác COD vuông tại O có OM là đường cao: OM2 = CM.DM.

R2 = AC.BD.

Vậy ta có điều phải chứng minh.

c) Gọi I là giao điểm của MH và BC, K là giao điểm của MB và AC.

Đường tròn (O) có hai tiếp tuyến DM, DB cắt nhau tại D.

Suy ra DM = DB.

Lại có OM = OB = R.

Suy ra OD là đường trung trực của đoạn MB.

Do đó OD MB.

Mà OD OC (tam giác COD vuông tại O).

Suy ra MB // OC.

Mà O là trung điểm AB (đường tròn (O) có AB là đường kính).

Do đó OC là đường trung bình của tam giác ABK.

Vì vậy C là trung điểm AK.

Ta có MH AB (giả thiết) và AK AB (do AK là tiếp tuyến của (O) tại A).

Suy ra MH // AK.

Áp dụng định lí Thales, ta được \(\frac{{MI}}{{CK}} = \frac{{IH}}{{AC}} = \frac{{BI}}{{BC}}\).

Mà CK = CA (C là trung điểm AK).

Suy ra MI = IH.

Do đó I là trung điểm của MH.

Vậy BC đi qua trung điểm I của đoạn MH.

Lời giải

Cho đường tròn (O) và điểm A bên ngoài đường tròn, từ A vẽ tiếp tuyến AB với (ảnh 1)

a) Vì D thuộc đường tròn (O) và BC là đường kính nên \(\widehat {BDC} = 90^\circ \).

Suy ra BD AC.

Ta có AB là tiếp tuyến của (O), với B là tiếp điểm.

Suy ra \(\widehat {ABC} = 90^\circ \).

Tam giác ABC vuông tại B có BD là đường cao: AB2 = AD.AC (Hệ thức lượng trong tam giác vuông).

Vậy BD vuông góc AC và AB2 = AD.AC.

b) Xét tam giác BEC có O là trung điểm BC (do BC là đường kính của (O)) và OH // CE (giả thiết).

Suy ra OH là đường trung bình của tam giác BEC.

Vậy H là trung điểm của BE.

Vì E thuộc đường tròn (O) và BC là đường kính nên \(\widehat {BEC} = 90^\circ \).

Suy ra BE CE.

Mà CE // OH (giả thiết).

Do đó OH BE hay AH BE.

Tam giác ABE có AH vừa là đường trung tuyến, vừa là đường cao.

Suy ra tam giác ABE cân tại A.

Do đó AB = AE.

Xét ∆ABO và ∆AEO, có:

AO chung;

AB = AE (chứng minh trên);

OB = OE (= R).

Do đó ∆ABO = ∆AEO (c.c.c).

Suy ra \(\widehat {AEO} = \widehat {ABO} = 90^\circ \) (cặp góc tương ứng).

Vậy AE là tiếp tuyến của (O).

c) Tam giác OBA vuông tại B có BH là đường cao: OB2 = OH.OA (Hệ thức lượng trong tam giác vuông).

Suy ra OC2 = OH.OA.

Xét ∆OHC và ∆OCA, có:

\(\frac{{OH}}{{OC}} = \frac{{OC}}{{OA}}\) (OC2 = OH.OA);

\(\widehat {COH}\) chung.

Do đó  (c.g.c).

Vậy \(\widehat {OCH} = \widehat {OAC}\) (cặp góc tương ứng).

d) Ta có \(\widehat {OCF} = \widehat {FCE}\,\,\left( { = \widehat {OFC}} \right)\).

Lại có \(\widehat {OCH} = \widehat {ACE}\,\,\left( { = \widehat {OAC}} \right)\).

Suy ra \(\widehat {HCF} = \widehat {FCA}\).

Khi đó CF là tia phân giác của \(\widehat {HCA}\).

Áp dụng tính chất đường phân giác cho tam giác HCA, ta được: \(\frac{{HF}}{{FA}} = \frac{{HC}}{{CA}}\).

Vậy FA.CH = HF.CA (điều phải chứng minh).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP