Câu hỏi:

30/06/2023 572

Cho tam giác ABC có AB = AC. Trên hai cạnh AB và AC lần lượt lấy 2 điểm M và N sao cho AM = AN. Gọi D, E lần lượt là trung điểm của MN và BC. Chứng minh rằng: 3 điểm A, E, D thẳng hàng.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC có AB = AC. Trên hai cạnh AB và AC lần lượt lấy 2 điểm (ảnh 1)

Tam giác ABC có AB = AC (giả thiết).

Suy ra tam giác ABC cân tại A.

Do đó đường trung tuyến AE cũng là đường phân giác của tam giác ABC.

Vì vậy AE là tia phân giác của \(\widehat {BAC}\)   (1)

Chứng minh tương tự, ta được AD là tia phân giác của \(\widehat {BAC}\)    (2)

Từ (1), (2), ta thu được ba điểm A, E, D thẳng hàng.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho nửa đường tròn tâm O, đường kính AB = 2R. Kẻ hai tiếp tuyến Ax, By của nửa đường tròn (O) tại A và B (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng có bờ là đường thẳng AB). Qua điểm M thuộc nửa đường tròn (M khác A và B), kẻ tiếp tuyến với nửa đường tròn, cắt tia Ax và By theo thứ tự tại C và D.

a) Chứng minh tam giác COD vuông tại O.

b) Chứng minh AC.BD = R2.

c) Kẻ MH vuông góc với AB (H AB). Chứng minh rằng BC đi qua trung điểm của đoạn MH.

Xem đáp án » 30/06/2023 19,153

Câu 2:

Cho đường tròn (O) và điểm A bên ngoài đường tròn, từ A vẽ tiếp tuyến AB với đường tròn (B là tiếp điểm). Kẻ đường kính BC của đường tròn (O). AC cắt đường tròn (O) tại D (D khác C).

a) Chứng minh rằng BD vuông góc AC và AB2 = AD.AC.

b) Từ C vẽ dây CE // OA. BE cắt OA tại H. Chứng minh rằng H là trung điểm của BE và AE là tiếp tuyến.

c) Chứng minh rằng \(\widehat {OCH} = \widehat {OAC}\).

d) Tia OA cắt đường tròn tại F. Chứng minh rằng FA.CH = HF.CA.

Xem đáp án » 30/06/2023 16,195

Câu 3:

Tìm một số tự nhiên có 3 chữ số, biết rằng khi viết thêm chữ số 2 vào bên phải số đó thì nó tăng 4106 đơn vị.

Xem đáp án » 30/06/2023 7,577

Câu 4:

Kí hiệu A \ B là gì?

Xem đáp án » 30/06/2023 4,774

Câu 5:

Cho tam giác ABC có BC = a, CA = b, AB = c thỏa mãn \[\frac{{a + b}}{6} = \frac{{b + c}}{5} = \frac{{c + a}}{7}\]. Tính giá trị của biểu thức T = cosA + 2cosB + 3cosC.

Xem đáp án » 30/06/2023 3,969

Câu 6:

Lấy điểm A trên (O; R), vẽ tiếp tuyến Ax. Trên Ax lấy điểm B. Trên (O; R) lấy điểm C sao cho BC = AB.

a) Chứng minh CB là tiếp tuyến của (O).

b) Vẽ đường kính AD của (O), kẻ CK vuông góc với AD. Chứng minh rằng CD // OB và BC.CD = CK.OB.

c) Lấy điểm M trên cung nhỏ AC của (O). Vẽ tiếp tuyến tại M cắt AB, BC lần lượt tại E, F. Vẽ đường tròn tâm I nội tiếp ∆BEF. Chứng minh .

Xem đáp án » 30/06/2023 3,161

Câu 7:

Cho tứ giác ABCD, O là giao điểm của hai đường chéo. Qua điểm I thuộc đoạn thẳng OB, vẽ đường thẳng song song với đường chéo AC, cắt các cạnh AB, BC và các tia DA, DC theo thứ tự tại các điểm M, N, P, Q.

a) Chứng minh \(\frac{{IM}}{{OA}} = \frac{{IB}}{{OB}}\)\(\frac{{IM}}{{IP}} = \frac{{IB}}{{ID}}.\frac{{OD}}{{OB}}\).

b) Chứng minh \(\frac{{IM}}{{IP}} = \frac{{IN}}{{IQ}}\).

Xem đáp án » 30/06/2023 3,134
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay