Câu hỏi:

30/06/2023 335

Tìm m để các hàm số sau có tập xác định là ℝ (hay luôn xác định trên ℝ):

a) \(y = f\left( x \right) = \frac{{3x + 1}}{{{x^2} + 2\left( {m - 1} \right)x + {m^2} + 3m + 5}}\).

b) \(y = f\left( x \right) = \sqrt {{x^2} + 2\left( {m - 1} \right)x + {m^2} + m - 6} \).

c) \(y = f\left( x \right) = \frac{{3x + 5}}{{\sqrt {{x^2} - 2\left( {m + 3} \right)x + m + 9} }}\).

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 69k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Hàm số đã cho có tập xác định là ℝ.

x2 + 2(m – 1)x + m2 + 3m + 5 ≠ 0, x ℝ.

∆’ = (m – 1)2 – (m2 + 3m + 5) < 0.

m2 – 2m + 1 – m2 – 3m – 5 < 0.

–5m – 4 < 0.

\( \Leftrightarrow m > \frac{{ - 4}}{5}\).

Vậy \(m > \frac{{ - 4}}{5}\) thỏa mãn yêu cầu bài toán.

b) Hàm số đã cho có tập xác định là ℝ.

x2 + 2(m – 1)x + m2 + m – 6 ≥ 0, x ℝ.

∆’ = (m – 1)2 – (m2 + m – 6) ≤ 0.

m2 – 2m + 1 – m2 – m + 6 ≤ 0.

–3m + 7 ≤ 0.

\( \Leftrightarrow m \ge \frac{7}{3}\).

Vậy \(m \ge \frac{7}{3}\) thỏa mãn yêu cầu bài toán.

c) Hàm số đã cho có tập xác định là ℝ.

x2 – 2(m + 3)x + m + 9 > 0, x ℝ.

∆’ = (m + 3)2 – (m + 9) < 0.

m2 + 6m + 9 – m – 9 < 0.

m2 + 5m < 0.

–5 < m < 0.

Vậy –5 < m < 0 thỏa mãn yêu cầu bài toán.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đường tròn (O) và điểm A bên ngoài đường tròn, từ A vẽ tiếp tuyến AB với đường tròn (B là tiếp điểm). Kẻ đường kính BC của đường tròn (O). AC cắt đường tròn (O) tại D (D khác C).

a) Chứng minh rằng BD vuông góc AC và AB2 = AD.AC.

b) Từ C vẽ dây CE // OA. BE cắt OA tại H. Chứng minh rằng H là trung điểm của BE và AE là tiếp tuyến.

c) Chứng minh rằng \(\widehat {OCH} = \widehat {OAC}\).

d) Tia OA cắt đường tròn tại F. Chứng minh rằng FA.CH = HF.CA.

Xem đáp án » 30/06/2023 12,216

Câu 2:

Cho nửa đường tròn tâm O, đường kính AB = 2R. Kẻ hai tiếp tuyến Ax, By của nửa đường tròn (O) tại A và B (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng có bờ là đường thẳng AB). Qua điểm M thuộc nửa đường tròn (M khác A và B), kẻ tiếp tuyến với nửa đường tròn, cắt tia Ax và By theo thứ tự tại C và D.

a) Chứng minh tam giác COD vuông tại O.

b) Chứng minh AC.BD = R2.

c) Kẻ MH vuông góc với AB (H AB). Chứng minh rằng BC đi qua trung điểm của đoạn MH.

Xem đáp án » 30/06/2023 11,891

Câu 3:

Tìm một số tự nhiên có 3 chữ số, biết rằng khi viết thêm chữ số 2 vào bên phải số đó thì nó tăng 4106 đơn vị.

Xem đáp án » 30/06/2023 6,152

Câu 4:

Cho tam giác ABC có BC = a, CA = b, AB = c thỏa mãn \[\frac{{a + b}}{6} = \frac{{b + c}}{5} = \frac{{c + a}}{7}\]. Tính giá trị của biểu thức T = cosA + 2cosB + 3cosC.

Xem đáp án » 30/06/2023 3,548

Câu 5:

Kí hiệu A \ B là gì?

Xem đáp án » 30/06/2023 2,875

Câu 6:

Lấy điểm A trên (O; R), vẽ tiếp tuyến Ax. Trên Ax lấy điểm B. Trên (O; R) lấy điểm C sao cho BC = AB.

a) Chứng minh CB là tiếp tuyến của (O).

b) Vẽ đường kính AD của (O), kẻ CK vuông góc với AD. Chứng minh rằng CD // OB và BC.CD = CK.OB.

c) Lấy điểm M trên cung nhỏ AC của (O). Vẽ tiếp tuyến tại M cắt AB, BC lần lượt tại E, F. Vẽ đường tròn tâm I nội tiếp ∆BEF. Chứng minh .

Xem đáp án » 30/06/2023 2,808

Câu 7:

Cho tứ giác ABCD, O là giao điểm của hai đường chéo. Qua điểm I thuộc đoạn thẳng OB, vẽ đường thẳng song song với đường chéo AC, cắt các cạnh AB, BC và các tia DA, DC theo thứ tự tại các điểm M, N, P, Q.

a) Chứng minh \(\frac{{IM}}{{OA}} = \frac{{IB}}{{OB}}\)\(\frac{{IM}}{{IP}} = \frac{{IB}}{{ID}}.\frac{{OD}}{{OB}}\).

b) Chứng minh \(\frac{{IM}}{{IP}} = \frac{{IN}}{{IQ}}\).

Xem đáp án » 30/06/2023 2,479

Bình luận


Bình luận