Câu hỏi:
30/06/2023 97Cho phương trình x2 + 2(m – 1)x – (m + 1) = 0. Tìm m để phương trình có 2 nghiệm nhỏ hơn 2.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có x2 + 2(m – 1)x – (m + 1) = 0 (1)
∆’ = (m – 1)2 + (m + 1) = m2 – 2m + 1 + m + 1 = m2 – m + 2.
\( = {\left( {m - \frac{1}{2}} \right)^2} + \frac{7}{4} \ge \frac{7}{4} > 0,\,\,\forall m \in \mathbb{R}\).
Vậy phương trình (1) luôn có hai nghiệm phân biệt với mọi m.
Theo Viet: \(S = {x_1} + {x_2} = - \frac{b}{a} = - 2\left( {m - 1} \right)\).
\(P = {x_1}{x_2} = \frac{c}{a} = - m - 1\).
Từ giả thiết, ta có x1 – 2 < 0 và x2 – 2 < 0.
\( \Leftrightarrow \left\{ \begin{array}{l}\left( {{x_1} - 2} \right)\left( {{x_2} - 2} \right) > 0\\{x_1} + {x_2} < 4\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{x_1}{x_2} - 2\left( {{x_1} + {x_2}} \right) + 4 > 0\\ - 2\left( {m - 1} \right) < 4\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l} - m - 1 + 4.\left( {m - 1} \right) + 4 > 0\\m - 1 > - 2\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}3m - 1 > 0\\m > - 1\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}m > \frac{1}{3}\\m > - 1\end{array} \right.\)
\( \Leftrightarrow m > \frac{1}{3}\).
Vậy \(m > \frac{1}{3}\) thỏa mãn yêu cầu bài toán.
Do đó ta chọn phương án D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho đường tròn (O) và điểm A bên ngoài đường tròn, từ A vẽ tiếp tuyến AB với đường tròn (B là tiếp điểm). Kẻ đường kính BC của đường tròn (O). AC cắt đường tròn (O) tại D (D khác C).
a) Chứng minh rằng BD vuông góc AC và AB2 = AD.AC.
b) Từ C vẽ dây CE // OA. BE cắt OA tại H. Chứng minh rằng H là trung điểm của BE và AE là tiếp tuyến.
c) Chứng minh rằng \(\widehat {OCH} = \widehat {OAC}\).
d) Tia OA cắt đường tròn tại F. Chứng minh rằng FA.CH = HF.CA.
Câu 2:
Cho nửa đường tròn tâm O, đường kính AB = 2R. Kẻ hai tiếp tuyến Ax, By của nửa đường tròn (O) tại A và B (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng có bờ là đường thẳng AB). Qua điểm M thuộc nửa đường tròn (M khác A và B), kẻ tiếp tuyến với nửa đường tròn, cắt tia Ax và By theo thứ tự tại C và D.
a) Chứng minh tam giác COD vuông tại O.
b) Chứng minh AC.BD = R2.
c) Kẻ MH vuông góc với AB (H ∈ AB). Chứng minh rằng BC đi qua trung điểm của đoạn MH.
Câu 3:
Tìm một số tự nhiên có 3 chữ số, biết rằng khi viết thêm chữ số 2 vào bên phải số đó thì nó tăng 4106 đơn vị.
Câu 4:
Cho tam giác ABC có BC = a, CA = b, AB = c thỏa mãn \[\frac{{a + b}}{6} = \frac{{b + c}}{5} = \frac{{c + a}}{7}\]. Tính giá trị của biểu thức T = cosA + 2cosB + 3cosC.
Câu 5:
Lấy điểm A trên (O; R), vẽ tiếp tuyến Ax. Trên Ax lấy điểm B. Trên (O; R) lấy điểm C sao cho BC = AB.
a) Chứng minh CB là tiếp tuyến của (O).
b) Vẽ đường kính AD của (O), kẻ CK vuông góc với AD. Chứng minh rằng CD // OB và BC.CD = CK.OB.
c) Lấy điểm M trên cung nhỏ AC của (O). Vẽ tiếp tuyến tại M cắt AB, BC lần lượt tại E, F. Vẽ đường tròn tâm I nội tiếp ∆BEF. Chứng minh .
Câu 6:
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, cạnh SA vuông góc với đáy và góc tạo bởi SB với đáy (ABC) bằng 60°. Tính thể tích khối chóp S.ABC tính theo a.
về câu hỏi!