Câu hỏi:
30/06/2023 415
Cho hình vuông ABCD có AC cắt BD tại O. Gọi E và F theo thứ tự là các điểm đối xứng với O qua AD và BC.
a) Chứng minh rằng các tứ giác AODE, BOCF là hình vuông.
b) Nối CE cắt DF tại I. Chứng minh rằng OI ⊥ CD.
c) Biết diện tích của hình lục giác ABFCDE bằng 6. Tính độ dài cạnh của hình vuông ABCD.
d) Lấy K là một điểm bất kì trên cạnh BC. Gọi G là trọng tâm của ∆AIK. Chứng minh rằng điểm G thuộc một đường thẳng cố định khi K di chuyển trên cạnh BC.
Cho hình vuông ABCD có AC cắt BD tại O. Gọi E và F theo thứ tự là các điểm đối xứng với O qua AD và BC.
a) Chứng minh rằng các tứ giác AODE, BOCF là hình vuông.
b) Nối CE cắt DF tại I. Chứng minh rằng OI ⊥ CD.
c) Biết diện tích của hình lục giác ABFCDE bằng 6. Tính độ dài cạnh của hình vuông ABCD.
d) Lấy K là một điểm bất kì trên cạnh BC. Gọi G là trọng tâm của ∆AIK. Chứng minh rằng điểm G thuộc một đường thẳng cố định khi K di chuyển trên cạnh BC.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:

a) Gọi T là giao điểm của AD và EO; H là giao điểm của BC và OF.
Vì E là điểm đối xứng của O qua AD nên AD là đường trung trực của đoạn OE.
Khi đó AO = AE.
Vì vậy tam giác OAE cân tại A.
Tam giác OAE cân tại A có AT là đường trung trực.
Suy ra AT cũng là đường phân giác của tam giác OAE.
Do đó \(\widehat {EAT} = \widehat {TAO} = 45^\circ \) (do ABCD là hình vuông).
Vì vậy \(\widehat {EAO} = \widehat {EAT} + \widehat {TAO} = 90^\circ \).
Chứng minh tương tự, ta được: \(\widehat {EDO} = 90^\circ \).
Xét tứ giác AODE, có: \(\widehat {EAO} = \widehat {EDO} = 90^\circ \) (chứng minh trên) và \(\widehat {AOD} = 90^\circ \) (ABCD là hình vuông).
Suy ra tứ giác AODE là hình chữ nhật.
Mà OA = OD (ABCD là hình vuông tâm O).
Vậy tứ giác AODE là hình vuông.
Chứng minh tương tự, ta được: tứ giác BOCF là hình vuông.
b) Ta có E và F theo thứ tự là các điểm đối xứng với O qua AD và BC.
Suy ra OE ⊥ AD và OF ⊥ BC.
Mà AD // BC (ABCD là hình vuông).
Do đó OE ⊥ BC.
Mà OF ⊥ BC (chứng minh trên).
Vì vậy ba điểm E, O, F thẳng hàng.
Xét ∆ECF và ∆FDE, có:
EF là cạnh chung;
FC = DE (OC = OD);
\(\widehat {CFE} = \widehat {DEF} = 45^\circ \).
Do đó ∆ECF = ∆FDE (c.g.c).
Suy ra \(\widehat {FEC} = \widehat {DFE}\) (cặp góc tương ứng).
Vì vậy tam giác EIF cân tại I.
Mà O là trung điểm của EF (OE = AD; OF = BC và AD = BC).
Suy ra OI là vừa là đường trung tuyến, vừa là đường cao của tam giác EIF.
Do đó OI ⊥ EF (1)
Ta có EF ⊥ AD (chứng minh trên) và AD ⊥ BC (ABCD là hình vuông).
Suy ra EF // CD (2)
Từ (1), (2), ta thu được OI ⊥ CD.
c) Ta có AODE là hình vuông (câu a).
Suy ra SAOD = SAED (tính chất hình vuông) (3)
Chứng minh tương tự, ta được: SBFC = SBOC (4)
Xét ∆AOD và ∆AOB, có:
AB = AD (ABCD là hình vuông);
AO là cạnh chung;
OB = OD (O là trung điểm BD).
Do đó ∆AOD = ∆AOB (c.c.c).
Suy ra SAOD = SAOB (5)
Chứng minh tương tự, ta được SDOC = SBOC và SAOB = SBOC (6)
Từ (3), (4), (5), (6), suy ra SAOD = SAED = SBFC = SBOC = SAOB = SDOC.
Theo đề ta có SABFCDE = 6.
Suy ra 6SABO = 6.
Do đó SABO = 1.
Vì vậy SABCD = SABO + SAOD + SDOC + SBOC = 4SABO = 4.
Suy ra AB2 = 4.
Vậy AD = CD = BC = AB = 2.
d) Gọi M là giao điểm của OI và AB; N là giao điểm của IM và AK.
Ta có OE = OF (O là trung điểm của EF).
Suy ra 2OT = 2OH.
Vì vậy OT = OH.
Vì OI ⊥ CD và CD // AB nên OI ⊥ AB hay OM ⊥ AB.
Mà O là trung điểm của HT (OT = OH).
Suy ra M là trung điểm của AB.
Tam giác ABK, có: MA = MB (M là trung điểm của AB) và MN // BK (cùng vuông góc với AB).
Do đó MN là đường trung bình của tam giác ABK.
Suy ra N là trung điểm AK.
Vì vậy IN là đường trung tuyến của tam giác AIK.
Mà G là trọng tâm của tam giác AIK.
Khi đó G ∈ IN hay G ∈ IM.
Mà I, M cố định.
Vậy điểm G thuộc một đường thẳng cố định IM khi K di chuyển trên cạnh BC.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Đường tròn (O) có hai tiếp tuyến AC, MC cắt nhau tại C.
Suy ra OC là tia phân giác của \(\widehat {AOM}\) (tính chất hai tiếp tuyến cắt nhau).
Do đó \(2\widehat {AOC} = 2\widehat {COM} = \widehat {AOM}\).
Chứng minh tương tự, ta được \(2\widehat {MOD} = 2\widehat {DOB} = \widehat {MOB}\).
Ta có \(\widehat {AOM} + \widehat {MOB} = 180^\circ \) (kề bù).
Suy ra \(2\widehat {COM} + 2\widehat {MOD} = 180^\circ \).
Khi đó \(2\left( {\widehat {COM} + \widehat {MOD}} \right) = 180^\circ \).
Vì vậy \(\widehat {COD} = 180^\circ :2 = 90^\circ \).
Vậy tam giác COD vuông tại O.
b) Đường tròn (O) có hai tiếp tuyến AC, MC cắt nhau tại C.
Suy ra AC = MC (tính chất hai tiếp tuyến cắt nhau).
Chứng minh tương tự, ta được DM = BD.
Ta có CD là tiếp tuyến của (O) có M là tiếp điểm. Suy ra OM ⊥ CD.
Tam giác COD vuông tại O có OM là đường cao: OM2 = CM.DM.
⇔ R2 = AC.BD.
Vậy ta có điều phải chứng minh.
c) Gọi I là giao điểm của MH và BC, K là giao điểm của MB và AC.
Đường tròn (O) có hai tiếp tuyến DM, DB cắt nhau tại D.
Suy ra DM = DB.
Lại có OM = OB = R.
Suy ra OD là đường trung trực của đoạn MB.
Do đó OD ⊥ MB.
Mà OD ⊥ OC (tam giác COD vuông tại O).
Suy ra MB // OC.
Mà O là trung điểm AB (đường tròn (O) có AB là đường kính).
Do đó OC là đường trung bình của tam giác ABK.
Vì vậy C là trung điểm AK.
Ta có MH ⊥ AB (giả thiết) và AK ⊥ AB (do AK là tiếp tuyến của (O) tại A).
Suy ra MH // AK.
Áp dụng định lí Thales, ta được \(\frac{{MI}}{{CK}} = \frac{{IH}}{{AC}} = \frac{{BI}}{{BC}}\).
Mà CK = CA (C là trung điểm AK).
Suy ra MI = IH.
Do đó I là trung điểm của MH.
Vậy BC đi qua trung điểm I của đoạn MH.
Lời giải

a) Vì D thuộc đường tròn (O) và BC là đường kính nên \(\widehat {BDC} = 90^\circ \).
Suy ra BD ⊥ AC.
Ta có AB là tiếp tuyến của (O), với B là tiếp điểm.
Suy ra \(\widehat {ABC} = 90^\circ \).
Tam giác ABC vuông tại B có BD là đường cao: AB2 = AD.AC (Hệ thức lượng trong tam giác vuông).
Vậy BD vuông góc AC và AB2 = AD.AC.
b) Xét tam giác BEC có O là trung điểm BC (do BC là đường kính của (O)) và OH // CE (giả thiết).
Suy ra OH là đường trung bình của tam giác BEC.
Vậy H là trung điểm của BE.
Vì E thuộc đường tròn (O) và BC là đường kính nên \(\widehat {BEC} = 90^\circ \).
Suy ra BE ⊥ CE.
Mà CE // OH (giả thiết).
Do đó OH ⊥ BE hay AH ⊥ BE.
Tam giác ABE có AH vừa là đường trung tuyến, vừa là đường cao.
Suy ra tam giác ABE cân tại A.
Do đó AB = AE.
Xét ∆ABO và ∆AEO, có:
AO chung;
AB = AE (chứng minh trên);
OB = OE (= R).
Do đó ∆ABO = ∆AEO (c.c.c).
Suy ra \(\widehat {AEO} = \widehat {ABO} = 90^\circ \) (cặp góc tương ứng).
Vậy AE là tiếp tuyến của (O).
c) Tam giác OBA vuông tại B có BH là đường cao: OB2 = OH.OA (Hệ thức lượng trong tam giác vuông).
Suy ra OC2 = OH.OA.
Xét ∆OHC và ∆OCA, có:
\(\frac{{OH}}{{OC}} = \frac{{OC}}{{OA}}\) (OC2 = OH.OA);
\(\widehat {COH}\) chung.
Do đó (c.g.c).
Vậy \(\widehat {OCH} = \widehat {OAC}\) (cặp góc tương ứng).
d) Ta có \(\widehat {OCF} = \widehat {FCE}\,\,\left( { = \widehat {OFC}} \right)\).
Lại có \(\widehat {OCH} = \widehat {ACE}\,\,\left( { = \widehat {OAC}} \right)\).
Suy ra \(\widehat {HCF} = \widehat {FCA}\).
Khi đó CF là tia phân giác của \(\widehat {HCA}\).
Áp dụng tính chất đường phân giác cho tam giác HCA, ta được: \(\frac{{HF}}{{FA}} = \frac{{HC}}{{CA}}\).
Vậy FA.CH = HF.CA (điều phải chứng minh).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.