Câu hỏi:

30/06/2023 2,218

Cho a, b, c ≥ 0 và thỏa mãn a2 + b2 + c2 + abc = 4. Chứng minh abc + 2 ≥ ab + bc + ca ≥ abc.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Điều phải chứng minh tương đương với:

0 ≤ ab + bc + ca – abc ≤ 2

Ta có: ab + bc + ca – abc = a(b + c) + bc(1 – a)

a2 + b2 + c2 + abc = 4

⇒ a24+b24+c24+2.a2.b2.c2=1

Do vậy tồn tại tam giác ABC không tù sao cho a = 2 cos A, b = 2 cos B, c = 2 cos C

Chứng minh trở thành: 2 cos A cos B + 2 cos B cos C + 2 cos C cos A – 4 cos A cos B cos C ≤ 1 (1).

Ta có nhận xét sau: có hai trong ba góc A, B, C không lớn hơn 60° hoặc không nhỏ hơn 60°.

Không mất tính tổng quát, giả sử hai góc đó là A và B, khi đó:

(1 – 2 cos A)(1 – 2 cos B) ≥ 0.

Mặt khác, ta có (1) tương đương với:

cos (A + B) + cos (A – B) + (2 cos A + 2 cos B – 4 cos A cos B) cos C ≤ 1

cos (A – B) + (2 cos A + 2 cos B – 4 cos A cos B – 1) cos C ≤ 1

cos (A – B) – (1 – 2 cos A)(1 – 2 cos B) cos C ≤ 1

Do (1 – 2 cos A)(1 – 2 cos B) ≥ 0 và cos (A – B) ≤ 1 nên bất đẳng thức luôn đúng. Bài toán được chứng minh.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Số có 2 chữ số nhỏ nhất chia hết cho 3 là: 12

Số có 2 chữ số lớn nhất chia hết cho 3 là: 99

Có số số có 2 chữ số chia hết cho 3 là:

 (99 – 12) : 3 + 1 = 30 (số)

Đáp số: 30 số.

Lời giải

142+152+...11002=14.4+15.5+...+1100.100<13.4+14.5+...+199.100

Mà 13.4+14.5+...+199.100=1314+1415+...+1991100=131100<13

Vậy 142+152+...11002<13

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay