Câu hỏi:

30/06/2023 1,901

Cho a, b, c ≥ 0 và thỏa mãn a2 + b2 + c2 + abc = 4. Chứng minh abc + 2 ≥ ab + bc + ca ≥ abc.

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Điều phải chứng minh tương đương với:

0 ≤ ab + bc + ca – abc ≤ 2

Ta có: ab + bc + ca – abc = a(b + c) + bc(1 – a)

a2 + b2 + c2 + abc = 4

⇒ a24+b24+c24+2.a2.b2.c2=1

Do vậy tồn tại tam giác ABC không tù sao cho a = 2 cos A, b = 2 cos B, c = 2 cos C

Chứng minh trở thành: 2 cos A cos B + 2 cos B cos C + 2 cos C cos A – 4 cos A cos B cos C ≤ 1 (1).

Ta có nhận xét sau: có hai trong ba góc A, B, C không lớn hơn 60° hoặc không nhỏ hơn 60°.

Không mất tính tổng quát, giả sử hai góc đó là A và B, khi đó:

(1 – 2 cos A)(1 – 2 cos B) ≥ 0.

Mặt khác, ta có (1) tương đương với:

cos (A + B) + cos (A – B) + (2 cos A + 2 cos B – 4 cos A cos B) cos C ≤ 1

cos (A – B) + (2 cos A + 2 cos B – 4 cos A cos B – 1) cos C ≤ 1

cos (A – B) – (1 – 2 cos A)(1 – 2 cos B) cos C ≤ 1

Do (1 – 2 cos A)(1 – 2 cos B) ≥ 0 và cos (A – B) ≤ 1 nên bất đẳng thức luôn đúng. Bài toán được chứng minh.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có bao nhiêu số có 2 chữ số đều chia hết cho 3?

Xem đáp án » 30/06/2023 6,655

Câu 2:

Cho a + b + c = 0 và a2 + b2 + c2 = 14. Tính a4 + b4 + c4.

Xem đáp án » 30/06/2023 5,634

Câu 3:

Chứng minh rằng: .142+152+...11002<13

Xem đáp án » 30/06/2023 5,026

Câu 4:

Tính tổng S = 1 – 2 + 3 – 4 +... + 99 – 100.

Xem đáp án » 30/06/2023 3,878

Câu 5:

Tìm x sao cho x4 + 2x3 + 2x2 + x + 3 là số chính phương.

Xem đáp án » 30/06/2023 3,796

Câu 6:

Tìm số tự nhiên n nhỏ nhất biết khi chia cho 11; 17; 29 thì số dư lần lượt là 6; 12; 24.

Xem đáp án » 30/06/2023 3,300

Câu 7:

Cho 5 chữ số 0, 1, 2, 3, 4 có thể viết được bao nhiêu số chẵn có 5 chữ số sao cho mỗi số trong đó xuất hiện đúng 1 lần.

Xem đáp án » 30/06/2023 3,178

Bình luận


Bình luận