Cho 5 chữ số 0, 1, 2, 3, 4 có thể viết được bao nhiêu số chẵn có 5 chữ số sao cho mỗi số trong đó xuất hiện đúng 1 lần.
Cho 5 chữ số 0, 1, 2, 3, 4 có thể viết được bao nhiêu số chẵn có 5 chữ số sao cho mỗi số trong đó xuất hiện đúng 1 lần.
Quảng cáo
Trả lời:
Gọi số thỏa mãn yêu cầu bài toán là
Để chẵn thì e ∈ {0; 2; 4}
+ Với e = 0 thì a có 4 cách chọn, b có 3 cách chọn, c có 2 cách chọn, d có 1 cách chọn
⇒ Lập được: 4 . 3 . 2 . 1 = 24 (số)
+ Với e = 2 thì:
e có 1 cách chọn
a có 3 cách chọn (vì a khác 0)
b có 3 cách chọn
c có 2 cách chọn
d có 1 cách chọn
⇒ Lập được: 3 . 3 . 2 . 1 = 18 (số).
+ Với e = 4, tương tự. lập được 18 số.
Vậy lập được là: 24 + 18 + 18 = 60 (số).Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Số có 2 chữ số nhỏ nhất chia hết cho 3 là: 12
Số có 2 chữ số lớn nhất chia hết cho 3 là: 99
Có số số có 2 chữ số chia hết cho 3 là:
(99 – 12) : 3 + 1 = 30 (số)
Đáp số: 30 số.
Lời giải
a + b + c = 0
⇔ (a + b + c)2 = 0
⇔ a2 + b2 + c2 + 2(ab + bc + ca) = 0
⇔ ab + bc + ca = –7.
Bình phương 2 vế ta có:
(ab + bc + ca)2 = 49
⇔ a2b2 + b2c2 + a2c2 + 2abc (a + b + c) = 49
⇔ a2b2 + b2c2 + a2c2 = 49.
Lại có:
a2 + b2 + c2 = 14
⇔ (a2 + b2 + c2)2 = 142 = 196
⇔ a4 + b4 + c4 + 2(a2b2 + b2c2 + a2c2) = 196
⇔ a4 + b4 + c4 + 2 . 49 = 196
⇔ a4 + b4 + c4 = 196 – 98
⇔ a4 + b4 + c4 = 98.
Vậy a4 + b4 + c4 = 98.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.