Câu hỏi:

30/06/2023 3,143

Cho đường thẳng d: y = –4x + 3.

a) Vẽ đồ thị hàm số.

b) Tìm tọa độ giao điểm A, B của d với lần lượt hai trục tọa độ Ox và Oy.

c) Tính khoảng cách từ gốc tọa độ đến d.

d) Tính diện tích tam giác OAB.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Bảng giá trị:

x

0

1

2

y

3

–1

–5

Đồ thị:

Cho đường thẳng d: y = -4x + 3. a) Vẽ đồ thị hàm số. b) Tìm tọa độ (ảnh 1)

b) Trục Ox: y = 0.

Với y = 0, ta có: \[ - 4x + 3 = 0 \Leftrightarrow x = \frac{3}{4}\].

Suy ra tọa độ \(A\left( {\frac{3}{4};0} \right)\).

Trục Oy: x = 0.

Với x = 0, ta có: y = –4.0 + 3 = 3.

Suy ra tọa độ B(0; 3).

Vậy \(A\left( {\frac{3}{4};0} \right)\), B(0; 3) thỏa mãn yêu cầu bài toán.

c) Gọi H là chân đường vuông góc kẻ từ O đến đường thẳng d.

Ta có \(OA = \frac{3}{4},\,\,OB = 3\).

Tam giác OAB vuông tại O có OH là đường cao:

\(\frac{1}{{O{H^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}} = \frac{1}{{{{\left( {\frac{3}{4}} \right)}^2}}} + \frac{1}{{{3^2}}} = \frac{{17}}{9}\).

Suy ra \(O{H^2} = \frac{9}{{17}}\).

Do đó \(OH = \frac{3}{{\sqrt {17} }}\).

Vậy khoảng cách từ gốc tọa độ đến d bằng \(\frac{3}{{\sqrt {17} }}\).

d) Ta có \({S_{\Delta OAB}} = \frac{1}{2}OA.OB = \frac{1}{2}.\frac{3}{4}.3 = \frac{9}{8}\).

Vậy diện tích tam giác OAB là \(\frac{9}{8}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình bình hành ABCD có góc A = 120 độ. Tia phân giác của góc D qua (ảnh 1)

a) Hình bình hành ABCD có \(\widehat {BAD},\,\widehat {ADC}\) ở vị trí trong cùng phía.

Suy ra \(\widehat {ADC} = 180^\circ - \widehat {BAD} = 60^\circ \).

Khi đó \(\widehat {ADI} = \widehat {IDC} = \frac{{\widehat {ADC}}}{2} = 30^\circ \) (do DI là tia phân giác của \(\widehat {ADC}\)).

\(\widehat {AID} = \widehat {IDC}\) (cặp góc so le trong).

Vì vậy \(\widehat {AID} = \widehat {ADI}\).

Suy ra tam giác ADI cân tại A.

Do đó AD = AI.

Mà AB = 2AI (I là trung điểm của AB).

Vậy AB = 2AD (điều phải chứng minh).

b) Gọi J là trung điểm của DI.

Tam giác ADI có AJ là đường trung tuyến.

Suy ra AJ vừa là đường phân giác, vừa là đường cao của tam giác ADI.

Khi đó \(\widehat {JAI} = \widehat {DAJ} = \frac{{\widehat {DAI}}}{2} = 60^\circ \).

Xét ∆AJD và ∆DHA, có:

\(\widehat {AJD} = \widehat {DHA} = 90^\circ \);

AD là cạnh chung;

\(\widehat {DAJ} = \widehat {ADH} = 60^\circ \).

Do đó ∆AJD = ∆DHA (cạnh huyền – góc nhọn).

Suy ra DJ = AH (cặp cạnh tương ứng).

Mà DI = 2DJ (J là trung điểm của DI).

Vậy DI = 2AH (điều phải chứng minh).

c) Ta có BI = BC \(\left( { = \frac{1}{2}AB} \right)\).

Suy ra tam giác IBC cân tại B.

\(\widehat {IBC} = \widehat {ADC} = 60^\circ \).

Do đó tam giác IBC đều.

Vì vậy IC = IB = IA.

Khi đó tam giác ABC vuông tại C hay \(\widehat {ACB} = 90^\circ \).

Suy ra \(\widehat {DAC} = \widehat {ACB} = 90^\circ \).

Vậy AD AC (điều phải chứng minh).

Lời giải

Ta có \({\sin ^2}a = 1 - {\cos ^2}a = 1 - {\left( {\frac{4}{5}} \right)^2} = \frac{9}{{25}}\).

\( \Rightarrow \sin a = \pm \frac{3}{5}\).

Vì 0° < a < 90° nên sina > 0.

Do đó \(\sin a = \frac{3}{5}\).

Ta có \(\tan a = \frac{{\sin a}}{{\cos a}} = \frac{3}{5}:\frac{4}{5} = \frac{3}{4}\).

Ta có \(\cot a = \frac{1}{{\tan a}} = \frac{4}{3}\).

Vậy \(\sin a = \frac{3}{5}\); \(\tan a = \frac{3}{4}\)\(\cot a = \frac{4}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP