Câu hỏi:
30/06/2023 1,223
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi O là giao điểm của AC và BD. Gọi M, N lần lượt là trung điểm của SB, SC. Tính tỉ số thể tích giữa hai khối chóp O.BCNM và S.ABCD.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi O là giao điểm của AC và BD. Gọi M, N lần lượt là trung điểm của SB, SC. Tính tỉ số thể tích giữa hai khối chóp O.BCNM và S.ABCD.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:

Ta có \(\frac{{d\left( {O,\left( {BCNM} \right)} \right)}}{{d\left( {A,\left( {BCNM} \right)} \right)}} = \frac{{CO}}{{CA}} = \frac{1}{2}\) (do O là trung điểm AC).
\( \Rightarrow d\left( {O,\left( {BCNM} \right)} \right) = \frac{1}{2}d\left( {A,\left( {BCNM} \right)} \right)\).
Lại có \({S_{SMN}} = \frac{1}{2}SM.SN.\sin \widehat {MSN} = \frac{1}{8}SB.SC.\sin \widehat {MSN} = \frac{1}{4}{S_{SBC}}\).
Suy ra \({S_{BCNM}} = {S_{SBC}} - {S_{SMN}} = {S_{SBC}} - \frac{1}{4}{S_{SBC}} = \frac{3}{4}{S_{SBC}}\).
Ta có \({S_{ABC}} = \frac{1}{2}d\left( {A,CD} \right).CD\) và SABCD = d(A, CD).CD.
Suy ra \({S_{ABC}} = \frac{1}{2}{S_{ABCD}}\).
Vì vậy \({V_{O.BCNM}} = \frac{1}{3}d\left( {O,\left( {BCNM} \right)} \right).{S_{BCNM}} = \frac{1}{3}.\frac{1}{2}d\left( {A,\left( {BCNM} \right)} \right).\frac{3}{4}{S_{SBC}}\).
\( = \frac{3}{8}{V_{SABC}} = \frac{3}{8}.\frac{1}{3}d\left( {S,\left( {ABC} \right)} \right).{S_{ABC}} = \frac{3}{8}.\frac{1}{3}d\left( {S,\left( {ABCD} \right)} \right).\frac{1}{2}{S_{ABCD}} = \frac{3}{{16}}{V_{S.ABCD}}\).
Suy ra \(\frac{{{V_{O.BCNM}}}}{{{V_{S.ABCD}}}} = \frac{3}{{16}}\).
Vậy tỉ số thể tích giữa hai khối chóp O.BCNM và S.ABCD là \(\frac{3}{{16}}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Hình bình hành ABCD có \(\widehat {BAD},\,\widehat {ADC}\) ở vị trí trong cùng phía.
Suy ra \(\widehat {ADC} = 180^\circ - \widehat {BAD} = 60^\circ \).
Khi đó \(\widehat {ADI} = \widehat {IDC} = \frac{{\widehat {ADC}}}{2} = 30^\circ \) (do DI là tia phân giác của \(\widehat {ADC}\)).
Mà \(\widehat {AID} = \widehat {IDC}\) (cặp góc so le trong).
Vì vậy \(\widehat {AID} = \widehat {ADI}\).
Suy ra tam giác ADI cân tại A.
Do đó AD = AI.
Mà AB = 2AI (I là trung điểm của AB).
Vậy AB = 2AD (điều phải chứng minh).
b) Gọi J là trung điểm của DI.
Tam giác ADI có AJ là đường trung tuyến.
Suy ra AJ vừa là đường phân giác, vừa là đường cao của tam giác ADI.
Khi đó \(\widehat {JAI} = \widehat {DAJ} = \frac{{\widehat {DAI}}}{2} = 60^\circ \).
Xét ∆AJD và ∆DHA, có:
\(\widehat {AJD} = \widehat {DHA} = 90^\circ \);
AD là cạnh chung;
\(\widehat {DAJ} = \widehat {ADH} = 60^\circ \).
Do đó ∆AJD = ∆DHA (cạnh huyền – góc nhọn).
Suy ra DJ = AH (cặp cạnh tương ứng).
Mà DI = 2DJ (J là trung điểm của DI).
Vậy DI = 2AH (điều phải chứng minh).
c) Ta có BI = BC \(\left( { = \frac{1}{2}AB} \right)\).
Suy ra tam giác IBC cân tại B.
Mà \(\widehat {IBC} = \widehat {ADC} = 60^\circ \).
Do đó tam giác IBC đều.
Vì vậy IC = IB = IA.
Khi đó tam giác ABC vuông tại C hay \(\widehat {ACB} = 90^\circ \).
Suy ra \(\widehat {DAC} = \widehat {ACB} = 90^\circ \).
Vậy AD ⊥ AC (điều phải chứng minh).
Lời giải
⦁ Ta có \({\sin ^2}a = 1 - {\cos ^2}a = 1 - {\left( {\frac{4}{5}} \right)^2} = \frac{9}{{25}}\).
\( \Rightarrow \sin a = \pm \frac{3}{5}\).
Vì 0° < a < 90° nên sina > 0.
Do đó \(\sin a = \frac{3}{5}\).
⦁ Ta có \(\tan a = \frac{{\sin a}}{{\cos a}} = \frac{3}{5}:\frac{4}{5} = \frac{3}{4}\).
⦁ Ta có \(\cot a = \frac{1}{{\tan a}} = \frac{4}{3}\).
Vậy \(\sin a = \frac{3}{5}\); \(\tan a = \frac{3}{4}\) và \(\cot a = \frac{4}{3}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.