Câu hỏi:
30/06/2023 2,170Tìm tất cả các nghiệm nguyên dương của phương trình 6x2 + 5y2 = 74.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Ta có 6x2 + 5y2 = 74.
⇔ 6(x2 – 4) = 5(10 – y2) (1)
Từ (1), ta suy ra 6(x2 – 4) ⋮ 5 và (6; 5) = 1.
⇒ x2 – 4 ⋮ 5.
⇒ x2 = 5k + 4 (k ∈ ℕ).
Thay x2 – 4 = 5k vào (1) ta được: 30k = 5(10 – y2).
⇒ 6k = 10 – y2.
⇒ y2 = 10 – 6k.
Ta có \(\left\{ \begin{array}{l}{x^2} > 0\\{y^2} > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}5k + 4 > 0\\10 - 6k > 0\end{array} \right.\)
\( \Leftrightarrow - \frac{4}{5} < k < \frac{5}{3}\).
Mà k ∈ ℕ.
Do đó ta nhận k ∈ {0; 1}.
Với k = 0, ta có y2 = 10. Suy ra \(y = \pm \sqrt {10} \) (loại vì y nguyên dương).
Với k = 1, ta có \(\left\{ \begin{array}{l}{x^2} = 5k + 4 = 5.1 + 4 = 9\\{y^2} = 10 - 6k = 10 - 6.1 = 4\end{array} \right.\)
\( \Rightarrow \left\{ \begin{array}{l}x = \pm 3\\y = \pm 2\end{array} \right.\)
Vì x, y nguyên dương nên ta nhận x = 3, y = 2.
Vậy (x, y) ∈ {(3; 2)} thỏa mãn yêu cầu bài toán.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình bình hành ABCD có \(\widehat A = 120^\circ \). Tia phân giác của \(\widehat D\) qua trung điểm I của AB. Kẻ AH vuông góc với DC. Chứng minh rằng:
a) AB = 2AD.
b) DI = 2AH.
c) AC vuông góc với AD.
Câu 2:
Cho \(\cos a = \frac{4}{5}\) và 0° < a < 90°. Tính sina, tana, cota.
Câu 3:
Cho (O; R), đường kính AB và một điểm M nằm trên (O; R) với MA < MB (M khác A và B). Tiếp tuyến tại M của (O; R) cắt tiếp tuyến tại A, B của (O; R) lần lượt tại C và D.
a) Chứng minh rằng ABDC là hình thang vuông.
b) AD cắt (O; R) tại E, OD cắt MB tại N. Chứng minh rằng OD vuông góc với MB và DE.DA = DN.DO.
c) Đường thẳng vuông góc với AB tại O cắt đường thẳng AM tại F. Chứng tỏ OFDB là hình chữ nhật.
d) AM = R. Tính diện tích tứ giác ACDB theo R.
Câu 4:
Trong vườn có 12 cây cam và 28 cây chanh. Tìm tỉ số phần trăm số cây cam so với tổng số cây trong vườn.
Câu 5:
Tìm a, b, c để đồ thị hàm số y = ax2 + bx + c là đường parabol có đỉnh I(3; 4), cắt trục hoành tại điểm có hoành độ bằng –1.
Câu 6:
Cho hình chữ nhật ABCD có AB = 4 cm, BC = 3 cm. Kẻ BH vuông góc với AC tại H, tia BH cắt AD ở E.
1) Tính AC, BH, \(\widehat {BAC}\).
2) Chứng minh BH.BE = CD2.
3) Kẻ EF vuông góc với BC tại F. Chứng minh .
4) Tính diện tích tam giác BHF.
Câu 7:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Tam giác SAB nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Biết rằng AB = a, \(AD = a\sqrt 3 \) và \(\widehat {ASB} = 60^\circ \). Tính diện tích khối cầu ngoại tiếp hình chóp S.ABCD.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận