Câu hỏi:
30/06/2023 172Cho hàm số y = f(x) = (5 – 3a)x + a + 6.
a) Với giá trị nào của a thì hàm số đồng biến, nghịch biến?
b) Biết f(–2) = 10. Tính f(2).
c) Biết f(3) = 5, hàm số đã cho đồng biến hay nghịch biến?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Hàm số đã cho đồng biến ⇔ 5 – 3a > 0.
\[ \Leftrightarrow a < \frac{5}{3}\].
Hàm số đã cho nghịch biến ⇔ 5 – 3a < 0.
\[ \Leftrightarrow a > \frac{5}{3}\].
Vậy \[a < \frac{5}{3}\] thì hàm số đã cho đồng biến; \[a > \frac{5}{3}\] thì hàm số đã cho nghịch biến.
b) Ta có f(–2) = 10.
⇔ (5 – 3a).(–2) + a + 6 = 10.
⇔ –10 + 6a + a + 6 = 10.
⇔ 7a = 14.
⇔ a = 2.
Khi đó ta có hàm số y = f(x) = –x + 8.
Vậy f(2) = –2 + 8 = 6.
c) Với f(3) = 5, ta có: (5 – 3a).3 + a + 6 = 5.
⇔ 15 – 9a + a + 6 = 5.
⇔ 8a = 16.
⇔ a = 2.
Vì \[a = 2 > \frac{5}{3}\] nên hàm số đã cho nghịch biến khi f(3) = 5.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình bình hành ABCD có \(\widehat A = 120^\circ \). Tia phân giác của \(\widehat D\) qua trung điểm I của AB. Kẻ AH vuông góc với DC. Chứng minh rằng:
a) AB = 2AD.
b) DI = 2AH.
c) AC vuông góc với AD.
Câu 2:
Cho \(\cos a = \frac{4}{5}\) và 0° < a < 90°. Tính sina, tana, cota.
Câu 3:
Cho hình chữ nhật ABCD có AB = 4 cm, BC = 3 cm. Kẻ BH vuông góc với AC tại H, tia BH cắt AD ở E.
1) Tính AC, BH, \(\widehat {BAC}\).
2) Chứng minh BH.BE = CD2.
3) Kẻ EF vuông góc với BC tại F. Chứng minh .
4) Tính diện tích tam giác BHF.
Câu 4:
Cho (O; R), đường kính AB và một điểm M nằm trên (O; R) với MA < MB (M khác A và B). Tiếp tuyến tại M của (O; R) cắt tiếp tuyến tại A, B của (O; R) lần lượt tại C và D.
a) Chứng minh rằng ABDC là hình thang vuông.
b) AD cắt (O; R) tại E, OD cắt MB tại N. Chứng minh rằng OD vuông góc với MB và DE.DA = DN.DO.
c) Đường thẳng vuông góc với AB tại O cắt đường thẳng AM tại F. Chứng tỏ OFDB là hình chữ nhật.
d) AM = R. Tính diện tích tứ giác ACDB theo R.
Câu 5:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Tam giác SAB nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Biết rằng AB = a, \(AD = a\sqrt 3 \) và \(\widehat {ASB} = 60^\circ \). Tính diện tích khối cầu ngoại tiếp hình chóp S.ABCD.
Câu 6:
Cho đường thẳng d: y = –4x + 3.
a) Vẽ đồ thị hàm số.
b) Tìm tọa độ giao điểm A, B của d với lần lượt hai trục tọa độ Ox và Oy.
c) Tính khoảng cách từ gốc tọa độ đến d.
d) Tính diện tích tam giác OAB.
Câu 7:
Với các số 0, 1, 3, 6, 9, có thể lập được bao nhiêu số tự nhiên có 4 chữ số khác nhau và không chia hết cho 3.
về câu hỏi!