Câu hỏi:

30/06/2023 204

Chứng minh rằng 2n3 + 3n2 + n chia hết cho 6 với mọi số nguyên n.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

2n3 + 3n2 + n

= n (2n2 + 3n + 1)

= n (2n2 +2n + n + 1)

= n [2n (n + 1) + (n + 1)]

= n (n + 1) (2n + 1)

= n (n + 1) (2n – 2 + 3)

= n (n + 1) (2n – 2) + 3n (n + 1)

= 2n (n + 1) (n – 1) + 3n (n + 1)

Ta thấy: n – 1; n và n + 1 là 3 số nguyên liên tiếp nên tích của chúng chia hết cho 3.

Vì 2 2 nên 2n (n + 1) (n – 1) 2

Vậy 2n (n + 1) (n – 1) 6. (1)

Lại có: 3 3 nên 3n (n + 1) 3

Mà n, n + 1 là 2 số nguyên liên tiếp nên n (n + 1) 2

Vậy 3n (n + 1) 6. (2)

Từ (1) và (2) suy ra: 2n (n + 1) (n – 1) + 3n (n + 1) 6

Vậy 2n3 + 3n2 + n 6.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Số có 2 chữ số nhỏ nhất chia hết cho 3 là: 12

Số có 2 chữ số lớn nhất chia hết cho 3 là: 99

Có số số có 2 chữ số chia hết cho 3 là:

 (99 – 12) : 3 + 1 = 30 (số)

Đáp số: 30 số.

Lời giải

142+152+...11002=14.4+15.5+...+1100.100<13.4+14.5+...+199.100

Mà 13.4+14.5+...+199.100=1314+1415+...+1991100=131100<13

Vậy 142+152+...11002<13

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay