Câu hỏi:

30/06/2023 557

Cho tam giác ABC vuông tại A, AB = 3 và AC = 4. Gọi I là tâm đường tròn nội tiếp của tam giác ABC. Chứng minh rằng \(5\overrightarrow {IA} + 4\overrightarrow {IB} + 3\overrightarrow {IC} = \vec 0\).

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC vuông tại A, AB = 3 và AC = 4. Gọi I là tâm đường tròn nội tiếp (ảnh 1)

Do tam giác ABC vuông tại A nên BC2 = AB2 + AC2 (Định lí Pythagore).

Suy ra \(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{3^2} + {4^2}} = 5\).

Gọi AD là đường phân giác của tam giác ABC.

Áp dụng tính chất đường phân giác, ta được: \(\frac{{DB}}{{DC}} = \frac{{AB}}{{AC}} = \frac{3}{4}\).

Khi đó \(\overrightarrow {BD} = \frac{3}{4}\overrightarrow {DC} \).

\( \Leftrightarrow \overrightarrow {ID} - \overrightarrow {IB} = \frac{3}{4}\overrightarrow {IC} - \frac{3}{4}\overrightarrow {ID} \).

\( \Leftrightarrow \frac{7}{4}\overrightarrow {ID} = \overrightarrow {IB} + \frac{3}{4}\overrightarrow {IC} \).

\( \Leftrightarrow 7\overrightarrow {ID} = 4\overrightarrow {IB} + 3\overrightarrow {IC} \)         (1)

Lại có BI là đường phân giác của tam giác ABD (do I là tâm đường tròn ngoại tiếp tam giác ABC).

Áp dụng tính chất đường phân giác, ta được: \(\frac{{ID}}{{IA}} = \frac{{BD}}{{BA}} = \frac{{DC}}{{AC}}\).

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{{ID}}{{IA}} = \frac{{BD}}{{BA}} = \frac{{DC}}{{AC}} = \frac{{BD + DC}}{{BA + AC}} = \frac{{BC}}{{BA + AC}} = \frac{5}{7}\).

Khi đó \(7\overrightarrow {ID} = - 5\overrightarrow {IA} \) (2)

Từ (1), (2), suy ra \(4\overrightarrow {IB} + 3\overrightarrow {IC} = - 5\overrightarrow {IA} \).

Vậy \(5\overrightarrow {IA} + 4\overrightarrow {IB} + 3\overrightarrow {IC} = \vec 0\) (điều phải chứng minh).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình bình hành ABCD có \(\widehat A = 120^\circ \). Tia phân giác của \(\widehat D\) qua trung điểm I của AB. Kẻ AH vuông góc với DC. Chứng minh rằng:

a) AB = 2AD.

b) DI = 2AH.

c) AC vuông góc với AD.

Xem đáp án » 30/06/2023 6,613

Câu 2:

Cho \(\cos a = \frac{4}{5}\) và 0° < a < 90°. Tính sina, tana, cota.

Xem đáp án » 30/06/2023 4,853

Câu 3:

Cho (O; R), đường kính AB và một điểm M nằm trên (O; R) với MA < MB (M khác A và B). Tiếp tuyến tại M của (O; R) cắt tiếp tuyến tại A, B của (O; R) lần lượt tại C và D.

a) Chứng minh rằng ABDC là hình thang vuông.

b) AD cắt (O; R) tại E, OD cắt MB tại N. Chứng minh rằng OD vuông góc với MB và DE.DA = DN.DO.

c) Đường thẳng vuông góc với AB tại O cắt đường thẳng AM tại F. Chứng tỏ OFDB là hình chữ nhật.

d) AM = R. Tính diện tích tứ giác ACDB theo R.

Xem đáp án » 30/06/2023 4,335

Câu 4:

Cho hình chữ nhật ABCD có AB = 4 cm, BC = 3 cm. Kẻ BH vuông góc với AC tại H, tia BH cắt AD ở E.

1) Tính AC, BH, \(\widehat {BAC}\).

2) Chứng minh BH.BE = CD2.

3) Kẻ EF vuông góc với BC tại F. Chứng minh .

4) Tính diện tích tam giác BHF.

Xem đáp án » 30/06/2023 3,858

Câu 5:

Trong vườn có 12 cây cam và 28 cây chanh. Tìm tỉ số phần trăm số cây cam so với tổng số cây trong vườn.

Xem đáp án » 30/06/2023 3,250

Câu 6:

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Tam giác SAB nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Biết rằng AB = a, \(AD = a\sqrt 3 \)\(\widehat {ASB} = 60^\circ \). Tính diện tích khối cầu ngoại tiếp hình chóp S.ABCD.

Xem đáp án » 30/06/2023 3,020

Câu 7:

Tìm a, b, c để đồ thị hàm số y = ax2 + bx + c là đường parabol có đỉnh I(3; 4), cắt trục hoành tại điểm có hoành độ bằng –1.

Xem đáp án » 30/06/2023 2,681

Bình luận


Bình luận