Câu hỏi:
30/06/2023 115Cho hình vuông ABCD cạnh bằng 2. Điểm M nằm trên đoạn thẳng AC sao cho \(AM = \frac{{AC}}{4}\). Gọi N là trung điểm của đoạn thẳng DC. Tính \(\overrightarrow {MB} .\overrightarrow {MN} \).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: B
Ta phân tích các vectơ \(\overrightarrow {MB} ,\,\,\overrightarrow {MN} \) theo các vectơ có giá vuông góc với nhau.
⦁ \(\overrightarrow {MB} = \overrightarrow {AB} - \overrightarrow {AM} = \overrightarrow {AB} - \frac{1}{4}\overrightarrow {AC} = \overrightarrow {AB} - \frac{1}{4}\left( {\overrightarrow {AB} + \overrightarrow {AD} } \right) = \frac{3}{4}\overrightarrow {AB} - \frac{1}{4}\overrightarrow {AD} \).
⦁ \(\overrightarrow {MN} = \overrightarrow {AN} - \overrightarrow {AM} = \overrightarrow {AD} + \overrightarrow {DN} - \frac{1}{4}\overrightarrow {AC} = \overrightarrow {AD} + \frac{1}{2}\overrightarrow {DC} - \frac{1}{4}\left( {\overrightarrow {AB} + \overrightarrow {AD} } \right)\).
\( = \overrightarrow {AD} + \frac{1}{2}\overrightarrow {AB} - \frac{1}{4}\left( {\overrightarrow {AB} + \overrightarrow {AD} } \right) = \frac{3}{4}\overrightarrow {AD} + \frac{1}{4}\overrightarrow {AB} \).
Khi đó \(\overrightarrow {MB} .\overrightarrow {MN} = \frac{1}{4}\left( {3\overrightarrow {AB} - \overrightarrow {AD} } \right)\left( {\overrightarrow {AB} + 3\overrightarrow {AD} } \right) = \frac{1}{4}\left( {3A{B^2} + 8\overrightarrow {AB} .\overrightarrow {AD} - 3A{D^2}} \right)\)
\( = \frac{1}{4}\left( {{{3.2}^2} + 8.0 - {{3.2}^2}} \right) = 0\).
Vậy ta chọn phương án B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình bình hành ABCD có \(\widehat A = 120^\circ \). Tia phân giác của \(\widehat D\) qua trung điểm I của AB. Kẻ AH vuông góc với DC. Chứng minh rằng:
a) AB = 2AD.
b) DI = 2AH.
c) AC vuông góc với AD.
Câu 2:
Cho \(\cos a = \frac{4}{5}\) và 0° < a < 90°. Tính sina, tana, cota.
Câu 3:
Cho hình chữ nhật ABCD có AB = 4 cm, BC = 3 cm. Kẻ BH vuông góc với AC tại H, tia BH cắt AD ở E.
1) Tính AC, BH, \(\widehat {BAC}\).
2) Chứng minh BH.BE = CD2.
3) Kẻ EF vuông góc với BC tại F. Chứng minh .
4) Tính diện tích tam giác BHF.
Câu 4:
Cho (O; R), đường kính AB và một điểm M nằm trên (O; R) với MA < MB (M khác A và B). Tiếp tuyến tại M của (O; R) cắt tiếp tuyến tại A, B của (O; R) lần lượt tại C và D.
a) Chứng minh rằng ABDC là hình thang vuông.
b) AD cắt (O; R) tại E, OD cắt MB tại N. Chứng minh rằng OD vuông góc với MB và DE.DA = DN.DO.
c) Đường thẳng vuông góc với AB tại O cắt đường thẳng AM tại F. Chứng tỏ OFDB là hình chữ nhật.
d) AM = R. Tính diện tích tứ giác ACDB theo R.
Câu 5:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Tam giác SAB nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Biết rằng AB = a, \(AD = a\sqrt 3 \) và \(\widehat {ASB} = 60^\circ \). Tính diện tích khối cầu ngoại tiếp hình chóp S.ABCD.
Câu 6:
Cho đường thẳng d: y = –4x + 3.
a) Vẽ đồ thị hàm số.
b) Tìm tọa độ giao điểm A, B của d với lần lượt hai trục tọa độ Ox và Oy.
c) Tính khoảng cách từ gốc tọa độ đến d.
d) Tính diện tích tam giác OAB.
Câu 7:
Mẹ hơn con 30 tuổi, tuổi mẹ gấp 6 lần tuổi con. Hỏi tuổi của mỗi người?
về câu hỏi!