Câu hỏi:
30/06/2023 1,485Cho 10 số tự nhiên bất kỳ: a1, a2, ....., a10. Chứng minh rằng thế nào cũng có một số hoặc tổng một số các số liên tiếp nhau trong dãy trên chia hết cho 10.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta lập dãy số như sau:
Đặt B1 = a1
B2 = a1 + a2
B3 = a1 + a2 + a3
….
B10 = a1 + a2 + a3 + … + a10
Nếu tồn tại Bi (i = 1, 2, 3, …, 10) nào đó chia hết cho 10 thì bài toán được chứng minh
Nếu không tồn tại Bi thì:
Ta đem Bi chia cho 10 sẽ được 10 số dư (các số dư từ 1 đến 9), Theo nguyên tắc Dirichlet, phải có ít nhất 2 số dư bằng nhau.
Các số Bm – Bn chia hết cho 10 (m > n)
Vậy thế nào cũng có một số hoặc tổng một số các số liên tiếp nhau trong dãy trên chia hết cho 10.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 5:
Cho 5 chữ số 0, 1, 2, 3, 4 có thể viết được bao nhiêu số chẵn có 5 chữ số sao cho mỗi số trong đó xuất hiện đúng 1 lần.
Câu 6:
Chứng minh n3 + 20n chia hết cho 48 với mọi số n là số tự nhiên chẵn.
về câu hỏi!