Câu hỏi:

30/06/2023 2,145

Mỗi điểm trên mặt phẳng được tô bởi ba màu xanh, đỏ, vàng. Chứng minh rằng tồn tại một đoạn thẳng có 2 đầu mút có cùng màu và khoảng cách giữa chúng bằng 1.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Mỗi điểm trên mặt phẳng được tô bởi ba màu xanh, đỏ, vàng. Chứng minh rằng tồn tại một đoạn thẳng có 2 đầu mút có cùng màu và khoảng cách giữa chúng bằng 1. (ảnh 1)

Dựng O;3 , P là một điểm thuộc O;3

  . Dựng hình thoi OPAB có đường chéo OP, cạnh là 1.

Gọi I là giao điểm của hai đường chéo, ta có:

OI = 32

AI2 = AO2 – OI2 = 1 – 322  = 14 .

AI = 12 AB = 1.

Vậy tam giác AOB đều có cạnh bằng 1.

Giả sử ngược lại, mọi cặp hai điểm có khoảng cách giữa chúng bằng 1 mà đều được tô bằng hai màu khác nhau.

Không mất tính tổng quát, ta giả sử điểm O được tô bằng màu xanh, điểm A được tô màu đỏ và điểm B tô màu vàng.

Bởi vì PA = PB = 1 nên P phải được tô màu xanh.

Với cách lập luận như vậy ta suy ra, tất cả các điểm trên đường tròn  O;3 đều được tô cùng một màu xanh. Mặt khác dễ dàng tìm được trên O;3 hai điểm mà khoảng cách giữa chúng bằng 1, nên theo giả sử chúng được tô bằng hai màu khác nhau. Vô lý.
Điều vô lý đó chứng tỏ có hai điểm được tô cùng một màu mà khoảng cách giữa chúng bằng 1.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Số có 2 chữ số nhỏ nhất chia hết cho 3 là: 12

Số có 2 chữ số lớn nhất chia hết cho 3 là: 99

Có số số có 2 chữ số chia hết cho 3 là:

 (99 – 12) : 3 + 1 = 30 (số)

Đáp số: 30 số.

Lời giải

142+152+...11002=14.4+15.5+...+1100.100<13.4+14.5+...+199.100

Mà 13.4+14.5+...+199.100=1314+1415+...+1991100=131100<13

Vậy 142+152+...11002<13

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay