Câu hỏi:

30/06/2023 1,143

Cho đường tròn (O; R) và điểm A cố định nằm ngoài đường tròn. Vẽ đường thẳng d vuông góc với OA tại A. Trên d lấy M. Qua M kẻ tiếp tuyến ME, MF với (O). Nối EF cắt OM tại H, cắt OA tại B.

a) Chứng minh tứ giác ABHM nội tiếp.

b) Chứng minh OA.OB = OH.OM = R2.

c) Chứng minh tâm I của đường tròn nội tiếp tam giác MEF thuộc một đường tròn cố định khi M di chuyển trên d.

d) Tìm vị trí của M để diện tích tam giác HBO lớn nhất.

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 69k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho đường tròn (O; R) và điểm A cố định nằm ngoài đường tròn. Vẽ đường thẳng (ảnh 1)

a) Do ME, MF là hai tiếp tuyến của (O) nên ME = MF.

Khi đó M thuộc đường trung trực của đoạn EF       (1)

Lại có OE = OF = R.

Suy ra O thuộc đường trung trực của đoạn EF        (2)

Từ (1), (2), suy ra OM là đường trung trực của đoạn EF.

Do đó OM EF.

Ta có \[\widehat {MHB} + \widehat {MAB} = 90^\circ + 90^\circ = 180^\circ \].

Vậy tứ giác ABHM nội tiếp đường tròn đường kính MB.

b) Xét ∆OHB và ∆OAM, có:

\(\widehat {HOB}\) chung;

\(\widehat {OHB} = \widehat {OAM} = 90^\circ \).

Do đó  (g.g).

Suy ra \(\frac{{OH}}{{OA}} = \frac{{OB}}{{OM}}\).

Vì vậy OH.OM = OA.OB         (3)

Tam giác OEM vuông tại E có EH là đường cao:

OE2 = OH.OM (Hệ thức lượng trong tam giác vuông).

R2 = OH.OM    (4)

Từ (3), (4), ta thu được OA.OB = OH.OM = R2.

c) Gọi I là giao điểm của OM với đường tròn (O).

Ta có \(\widehat {MFI} = \widehat {FEI}\) (góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn cung FI)   (5)

Do EF OM nên .

Suy ra \(\widehat {FEI} = \widehat {EFI}\) (hai góc nội tiếp chắn hai cung bằng nhau)   (6)

Từ (5), (6), suy ra \(\widehat {MFI} = \widehat {EFI}\).

Do đó FI là tia phân giác của \(\widehat {MFE}\).

Tam giác MEF cân tại M có MH là đường trung trực.

Suy ra MH cũng là đường phân giác của tam giác MEF.

Ta có I là giao điểm của hai đường phân giác FI, MH của tam giác MEF.

Khi đó I là tâm của đường tròn nội tiếp tam giác MEF.

Mà I thuộc đường tròn (O) cố định.

Vậy ta có điều phải chứng minh.

d) Ta có \({S_{\Delta HBO}} = \frac{1}{2}OH.HB\).

Ta có  (chứng minh trên).

Suy ra \(\frac{{HB}}{{AM}} = \frac{{OB}}{{OM}}\).

Do đó HB.OM = AM.OB         (7)

Lại có OH.OM = R2 (kết quả câu b)    (8)

Nhân (7) và (8) vế theo vế, ta được: \(OH.HB.O{M^2} = {R^2}.AM.OB = {R^2}.AM.\frac{{{R^2}}}{{OA}}\).

\( \Rightarrow OH.HB = AM.\frac{{{R^4}}}{{OA.O{M^2}}} = {R^4}.\frac{{AM}}{{OA.\left( {O{A^2} + A{M^2}} \right)}}\).

Áp dụng bất đẳng thức Cauchy, ta được: OA2 + AM2 ≥ 2OA.AM.

Khi đó ta có \(OH.HB = {R^4}.\frac{{AM}}{{OA.\left( {O{A^2} + A{M^2}} \right)}} \le {R^4}.\frac{{AM}}{{OA.2.OA.AM}} = \frac{{{R^4}}}{{2O{A^2}}}\).

Suy ra \({S_{\Delta HBO}} \le \frac{{{R^4}}}{{4O{A^2}}}\).

Dấu “=” xảy ra OA = AM.

Vì vậy diện tích tam giác HBO lớn nhất bằng \(\frac{{{R^4}}}{{4O{A^2}}}\) khi và chỉ khi OA = OM.

Vậy M là điểm nằm trên đường thẳng d sao cho OA = OM thì diện tích tam giác HBO lớn nhất.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình bình hành ABCD có \(\widehat A = 120^\circ \). Tia phân giác của \(\widehat D\) qua trung điểm I của AB. Kẻ AH vuông góc với DC. Chứng minh rằng:

a) AB = 2AD.

b) DI = 2AH.

c) AC vuông góc với AD.

Xem đáp án » 30/06/2023 6,441

Câu 2:

Cho \(\cos a = \frac{4}{5}\) và 0° < a < 90°. Tính sina, tana, cota.

Xem đáp án » 30/06/2023 4,817

Câu 3:

Cho (O; R), đường kính AB và một điểm M nằm trên (O; R) với MA < MB (M khác A và B). Tiếp tuyến tại M của (O; R) cắt tiếp tuyến tại A, B của (O; R) lần lượt tại C và D.

a) Chứng minh rằng ABDC là hình thang vuông.

b) AD cắt (O; R) tại E, OD cắt MB tại N. Chứng minh rằng OD vuông góc với MB và DE.DA = DN.DO.

c) Đường thẳng vuông góc với AB tại O cắt đường thẳng AM tại F. Chứng tỏ OFDB là hình chữ nhật.

d) AM = R. Tính diện tích tứ giác ACDB theo R.

Xem đáp án » 30/06/2023 4,241

Câu 4:

Cho hình chữ nhật ABCD có AB = 4 cm, BC = 3 cm. Kẻ BH vuông góc với AC tại H, tia BH cắt AD ở E.

1) Tính AC, BH, \(\widehat {BAC}\).

2) Chứng minh BH.BE = CD2.

3) Kẻ EF vuông góc với BC tại F. Chứng minh .

4) Tính diện tích tam giác BHF.

Xem đáp án » 30/06/2023 3,837

Câu 5:

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Tam giác SAB nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Biết rằng AB = a, \(AD = a\sqrt 3 \)\(\widehat {ASB} = 60^\circ \). Tính diện tích khối cầu ngoại tiếp hình chóp S.ABCD.

Xem đáp án » 30/06/2023 2,900

Câu 6:

Tìm a, b, c để đồ thị hàm số y = ax2 + bx + c là đường parabol có đỉnh I(3; 4), cắt trục hoành tại điểm có hoành độ bằng –1.

Xem đáp án » 30/06/2023 2,425

Câu 7:

Cho tam giác ABC đều cạnh bằng a, M là điểm di động trên đường thẳng AC. Tìm giá trị nhỏ nhất của biểu thức \(T = \left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right| + 3\left| {\overrightarrow {MA} - \overrightarrow {MB} + \overrightarrow {MC} } \right|\).

Xem đáp án » 30/06/2023 2,235

Bình luận


Bình luận