Câu hỏi:

19/08/2025 4,536 Lưu

Cho đường tròn (O; R) và điểm A cố định nằm ngoài đường tròn. Vẽ đường thẳng d vuông góc với OA tại A. Trên d lấy M. Qua M kẻ tiếp tuyến ME, MF với (O). Nối EF cắt OM tại H, cắt OA tại B.

a) Chứng minh tứ giác ABHM nội tiếp.

b) Chứng minh OA.OB = OH.OM = R2.

c) Chứng minh tâm I của đường tròn nội tiếp tam giác MEF thuộc một đường tròn cố định khi M di chuyển trên d.

d) Tìm vị trí của M để diện tích tam giác HBO lớn nhất.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho đường tròn (O; R) và điểm A cố định nằm ngoài đường tròn. Vẽ đường thẳng (ảnh 1)

a) Do ME, MF là hai tiếp tuyến của (O) nên ME = MF.

Khi đó M thuộc đường trung trực của đoạn EF       (1)

Lại có OE = OF = R.

Suy ra O thuộc đường trung trực của đoạn EF        (2)

Từ (1), (2), suy ra OM là đường trung trực của đoạn EF.

Do đó OM EF.

Ta có \[\widehat {MHB} + \widehat {MAB} = 90^\circ + 90^\circ = 180^\circ \].

Vậy tứ giác ABHM nội tiếp đường tròn đường kính MB.

b) Xét ∆OHB và ∆OAM, có:

\(\widehat {HOB}\) chung;

\(\widehat {OHB} = \widehat {OAM} = 90^\circ \).

Do đó  (g.g).

Suy ra \(\frac{{OH}}{{OA}} = \frac{{OB}}{{OM}}\).

Vì vậy OH.OM = OA.OB         (3)

Tam giác OEM vuông tại E có EH là đường cao:

OE2 = OH.OM (Hệ thức lượng trong tam giác vuông).

R2 = OH.OM    (4)

Từ (3), (4), ta thu được OA.OB = OH.OM = R2.

c) Gọi I là giao điểm của OM với đường tròn (O).

Ta có \(\widehat {MFI} = \widehat {FEI}\) (góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn cung FI)   (5)

Do EF OM nên .

Suy ra \(\widehat {FEI} = \widehat {EFI}\) (hai góc nội tiếp chắn hai cung bằng nhau)   (6)

Từ (5), (6), suy ra \(\widehat {MFI} = \widehat {EFI}\).

Do đó FI là tia phân giác của \(\widehat {MFE}\).

Tam giác MEF cân tại M có MH là đường trung trực.

Suy ra MH cũng là đường phân giác của tam giác MEF.

Ta có I là giao điểm của hai đường phân giác FI, MH của tam giác MEF.

Khi đó I là tâm của đường tròn nội tiếp tam giác MEF.

Mà I thuộc đường tròn (O) cố định.

Vậy ta có điều phải chứng minh.

d) Ta có \({S_{\Delta HBO}} = \frac{1}{2}OH.HB\).

Ta có  (chứng minh trên).

Suy ra \(\frac{{HB}}{{AM}} = \frac{{OB}}{{OM}}\).

Do đó HB.OM = AM.OB         (7)

Lại có OH.OM = R2 (kết quả câu b)    (8)

Nhân (7) và (8) vế theo vế, ta được: \(OH.HB.O{M^2} = {R^2}.AM.OB = {R^2}.AM.\frac{{{R^2}}}{{OA}}\).

\( \Rightarrow OH.HB = AM.\frac{{{R^4}}}{{OA.O{M^2}}} = {R^4}.\frac{{AM}}{{OA.\left( {O{A^2} + A{M^2}} \right)}}\).

Áp dụng bất đẳng thức Cauchy, ta được: OA2 + AM2 ≥ 2OA.AM.

Khi đó ta có \(OH.HB = {R^4}.\frac{{AM}}{{OA.\left( {O{A^2} + A{M^2}} \right)}} \le {R^4}.\frac{{AM}}{{OA.2.OA.AM}} = \frac{{{R^4}}}{{2O{A^2}}}\).

Suy ra \({S_{\Delta HBO}} \le \frac{{{R^4}}}{{4O{A^2}}}\).

Dấu “=” xảy ra OA = AM.

Vì vậy diện tích tam giác HBO lớn nhất bằng \(\frac{{{R^4}}}{{4O{A^2}}}\) khi và chỉ khi OA = OM.

Vậy M là điểm nằm trên đường thẳng d sao cho OA = OM thì diện tích tam giác HBO lớn nhất.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình bình hành ABCD có góc A = 120 độ. Tia phân giác của góc D qua (ảnh 1)

a) Hình bình hành ABCD có \(\widehat {BAD},\,\widehat {ADC}\) ở vị trí trong cùng phía.

Suy ra \(\widehat {ADC} = 180^\circ - \widehat {BAD} = 60^\circ \).

Khi đó \(\widehat {ADI} = \widehat {IDC} = \frac{{\widehat {ADC}}}{2} = 30^\circ \) (do DI là tia phân giác của \(\widehat {ADC}\)).

\(\widehat {AID} = \widehat {IDC}\) (cặp góc so le trong).

Vì vậy \(\widehat {AID} = \widehat {ADI}\).

Suy ra tam giác ADI cân tại A.

Do đó AD = AI.

Mà AB = 2AI (I là trung điểm của AB).

Vậy AB = 2AD (điều phải chứng minh).

b) Gọi J là trung điểm của DI.

Tam giác ADI có AJ là đường trung tuyến.

Suy ra AJ vừa là đường phân giác, vừa là đường cao của tam giác ADI.

Khi đó \(\widehat {JAI} = \widehat {DAJ} = \frac{{\widehat {DAI}}}{2} = 60^\circ \).

Xét ∆AJD và ∆DHA, có:

\(\widehat {AJD} = \widehat {DHA} = 90^\circ \);

AD là cạnh chung;

\(\widehat {DAJ} = \widehat {ADH} = 60^\circ \).

Do đó ∆AJD = ∆DHA (cạnh huyền – góc nhọn).

Suy ra DJ = AH (cặp cạnh tương ứng).

Mà DI = 2DJ (J là trung điểm của DI).

Vậy DI = 2AH (điều phải chứng minh).

c) Ta có BI = BC \(\left( { = \frac{1}{2}AB} \right)\).

Suy ra tam giác IBC cân tại B.

\(\widehat {IBC} = \widehat {ADC} = 60^\circ \).

Do đó tam giác IBC đều.

Vì vậy IC = IB = IA.

Khi đó tam giác ABC vuông tại C hay \(\widehat {ACB} = 90^\circ \).

Suy ra \(\widehat {DAC} = \widehat {ACB} = 90^\circ \).

Vậy AD AC (điều phải chứng minh).

Lời giải

Cho (O; R), đường kính AB và một điểm M nằm trên (O; R) với MA < MB  (ảnh 1)

a) Ta có AC là tiếp tuyến của (O). Suy ra AC AB   (1)

Chứng minh tương tự, ta được BD AB   (2)

Từ (1), (2), suy ra AC // BD và \[\widehat {BAC} = 90^\circ \].

Vậy ABDC là hình thang vuông.

b) Ta có MD, MB là hai tiếp tuyến của (O).

Suy ra MD = MB.

Do đó D thuộc đường trung trực của đoạn MB      (3)

Lại có OB = OM = R.

Suy ra O thuộc đường trung trực của đoạn MB      (4)

Từ (3), (4), suy ra OD là đường trung trực của đoạn MB.

Vậy OD MB tại N.

Ta có \(\widehat {AEB} = 90^\circ \)\(\widehat {AMB} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn (O)).

Tam giác ABD vuông tại B có BE là đường cao: BD2 = DE.DA          (5)

Tam giác BDO vuông tại B có BN là đường cao: BD2 = DN.DO         (6)

Từ (5), (6), ta thu được DE.DA = DN.DO.

c) Xét ∆AOF và ∆OBD, có:

\(\widehat {AOF} = \widehat {OBD} = 90^\circ \);

AO = OB (= R);

\(\widehat {{A_1}} = \widehat {{O_1}}\) (cùng phụ với \(\widehat {ABM}\)).

Do đó ∆AOF = ∆OBD (cạnh huyền – góc nhọn).

Suy ra OF = BD (cặp cạnh tương ứng).

Mà OF // BD (cùng vuông góc với AB).

Do đó OFDB là hình bình hành.

\[\widehat {OBD} = 90^\circ \].

Vậy OFDB là hình chữ nhật.

d) Ta có AM = OM = OA = R.

Suy ra tam giác OAM đều.

Do đó \(\widehat {DBM} = \widehat {{A_1}} = 60^\circ \) (cùng phụ với \(\widehat {ABM}\)) và DM = DB (tính chất hai tiếp tuyến cắt nhau).

Suy ra tam giác MBD đều.

Khi đó DB = MB.

Tam giác ABM vuông tại M: \[MB = \sqrt {A{B^2} - A{M^2}} = \sqrt {4{R^2} - {R^2}} = R\sqrt 3 \].

Ta có CA = CM và CO là tia phân giác của \(\widehat {ACM}\) (tính chất hai tiếp tuyến cắt nhau).

Suy ra tam giác ACM cân tại C có CO là vừa là đường phân giác, vừa là đường cao.

Gọi K là giao điểm của CO và AM. Suy ra K là trung điểm của AM và CK AK.

Ta có \(\widehat {CAK} = 90^\circ - \widehat {KAO} = 90^\circ - 60^\circ = 30^\circ \).

Tam giác AKC vuông tại K: \[AC = \frac{{AK}}{{\cos \widehat {CAK}}} = \frac{{AM}}{{2.\cos \widehat {CAK}}} = \frac{R}{{2.\cos 30^\circ }} = \frac{R}{{\sqrt 3 }}\].

Khi đó \[{S_{ABDC}} = \frac{{\left( {AC + BD} \right).AB}}{2} = \frac{{\left( {AC + MB} \right).AB}}{2}\].

\[ = \frac{{\left( {\frac{R}{{\sqrt 3 }} + R\sqrt 3 } \right).2R}}{2} = \frac{{4{R^2}}}{{\sqrt 3 }}\].

Vậy diện tích tứ giác ABDC bằng \[\frac{{4{R^2}}}{{\sqrt 3 }}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP