Câu hỏi:
03/07/2023 156Bạn Sơn tạo các hình bằng những chiếc tăm giống nhau theo sơ đồ nhứ hình trên (Hình thứ n có n2 ô vuông giống nhau và mỗi cạnh hình vuông là một chiếc tăm). Hỏi Sơn phải thêm bao nhiêu chiếc tăm vào hình thứ 2018 để được hình thứ 2019.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
• Với n = 1 ta có hình 12 = 1 ô vuông và cần dùng 4 = 2.1.(1 + 1) (chiếc tăm).
• Với n = 2 ta có hình 22 = 4 ô vuông và cần dùng 12 = 2.2.(2 + 1) (chiếc tăm).
• Với n = 3 ta có hình 32 = 9 ô vuông và cần dùng 24 = 2.3.(3 + 1) (chiếc tăm).
…
Như vậy mỗi số n ta có n2 và cần dùng 2n(n + 1) chiếc tăm để tạo thành.
• Với n = 2018 ta có: 20182 ô vuông và cần 2 . 2018 . 2019 (chiếc tăm).
• Với n = 2019 ta có: 20192 ô vuông và cần 2 . 2019 . 2020 (chiếc tăm).
Vậy từ hình thứ 2018 đến 2019 ta cần thêm số chiếc tăm là:
2 . 2019 . 2020 – 2 . 2018 . 2019 = 8 076 (chiếc tăm)
Đáp số: 8076 chiếc tăm
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có đường cao AI. Từ A kẻ tia Ax vuông góc AC, từ B kẻ tia By song song AC. Gọi M là giao điểm của tia Ax và tia By. Nối M với trung điểm P của AB, đường thẳng MP cắt AC tại Q và đường thẳng BQ cắt AI tại H.
a) Tứ giác AMBQ là hình gì?
b) Chứng minh CH vuông góc AB.
c) Chứng minh tam giác PIQ cân.
Câu 2:
Cho a là góc tù và \(\sin a = \frac{4}{5}\). Tính A = 2sina – cosa.
Câu 3:
Tổng tất cả các giá trị thực của tham số m để hàm số y = 3x3 + 2(m + 1)x2 – 3mx + m – 5 có hai điểm cực trị x1, x2 đồng thời y(x1).y(x2) = 0 là
Câu 4:
Tìm điểm cố định mà đường thẳng y = (m – 2)x + 3 luôn đi qua với mọi giá trị của m.
Câu 5:
Tìm tập hợp tất cả các giá trị của tham số m để hàm số:
\(y = f\left( x \right) = \sqrt {{x^2} - 3mx + 4} \) có tập xác định là D = ℝ.
Câu 6:
Xác định hàm số bậc hai y = 2x2 + bx + c biết đồ thị của nó có đỉnh I(−1; −2).
Câu 7:
Xác định hàm số bậc hai y = ax2 + bx + c biết đồ thị của nó có đỉnh I(1; −1) và đi qua điểm A(2; 0)
về câu hỏi!