Câu hỏi:

19/08/2025 847 Lưu

Cho hàm số y = (2m – 3)x + m – 1. Chứng minh rằng đồ thị hàm số đi qua điểm cố định với mọi giá trị của m. Tìm điểm cố định ấy.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi M(x0; y0) là điểm cố định mà đường thẳng (d) luôn đi qua. Khi đó ta có:

y0 = (2m – 3)x0 + m – 1

y0 = 2mx0 – 3x0 + m – 1

y0 – 2mx0 – 3x0 + m – 1 = 0

m(–2x0 + 1) + (y0 – 3x0 – 1) = 0

\[ \Rightarrow \left\{ \begin{array}{l} - 2{x_0} + 1 = 0\\{y_0} - 3{x_0} - 1 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_0} = \frac{1}{2}\\{y_0} = \frac{5}{2}\end{array} \right.\]

\( \Rightarrow M\left( {\frac{1}{2};\frac{5}{2}} \right)\)

Vậy với mọi m, họ các đường thẳng (d) có phương trình y = (m + 1)x + 2x – m luôn đi qua mọt điểm M cố định có tọa độ \(M\left( {\frac{1}{2};\frac{5}{2}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC có đường cao AI. Từ A kẻ tia Ax vuông góc AC, từ B kẻ tia By (ảnh 1)

Vì Ax AC AM AC

mà BM // AC

AM BM

Chứng minh tương tự AQ // BM và BM // AQ (cmt)

Suy ra AMBQ là hình bình hành.

\(\widehat {AMB} = \widehat {MBQ} = \widehat {ABQ} = \widehat {MAQ} = {90^o}\).

Vậy AMBQ là hình chữ nhật.

b) BQ AC (cmt) mà \(BQ \cap AI = H\)

Suy ra H là trực tâm của tam giác ABC.

Do đó: CH AB

c) AMBQ là hình chữ nhật mà \(AB \cap QM = P\)

P là trung điểm AB và P là trung điểm QM

\(\Delta ABI\) vuông tại I có đường trung tuyến IP

\(IP = \frac{1}{2}AB\)

IP = PQ

\(\Delta IPQ\) cân tại P.

Lời giải

Cho tam giác ABC, trên tia đối của tia AB lấy điểm D sao cho AD = AB. Trên tia  (ảnh 1)

a) Xét \(\Delta ADE\)\(\Delta ABC\) có:

AD = AB

\(\widehat {DAE} = \widehat {BAC}\) (2 góc đối đỉnh)

AC = AE

\(\Delta ADE = \Delta BAC\left( {c.g.c} \right)\)

\(\widehat {ADE} = \widehat {ABC}\) (2 góc tương ứng) mà chúng ở vị trí so le trong với nhau

BC // DE (đpcm)

b) Xét \(\Delta DAM\)\(\Delta BAN\) có:

\(\widehat {DAM} = \widehat {BAN}\) (2 góc đối đỉnh)

AD = AB

\(\widehat {ABN} = \widehat {ADM}\) (CMT)

\(\Delta DAM = \Delta BAN\left( {g.c.g} \right)\)

AM = AN (2 cạnh tương ứng) (dpcm)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP