Câu hỏi:
03/07/2023 1,278Cho △ABC nhọn các đường cao AD và BE cắt tại H. Gọi M là trung điểm BC. P đối xứng với H qua BC, Q đối xứng với H qua M.
a) PQ // BC. Tứ giác DMQP là hình gì?
b) Chứng minh rằng: HCQB là hình bình hành.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Vì H đối xứng với P qua BC nên BC là đường trung trực của HP, hay HP⊥BC tại trung điểm của HP.
Suy ra D là trung điểm của HP nên \(\frac{{HD}}{{PQ}} = 1\) (1)
Mặt khác: H đối xứng với Q qua M nên M là trung điểm của HQ nên \(\frac{{HM}}{{MQ}} = 1\) (2)
Từ (1) và (2) suy ra \(\frac{{HD}}{{DP}} = \frac{{HM}}{{MQ}}\)
Theo định lý Talet đảo thì DM // PQ hay BC // PQ (đpcm)
Tứ giác DMQP có DM // PQ và \(\widehat D = 90^\circ \) do HP⊥BC tại D
Do đó tứ giác DMQP là hình thang vuông.
b) Tứ giác HCQB có hai đường chéo BC, HQ cắt nhau tại trung điểm M của mỗi đường nên suy ra HCQB là hình bình hành (đpcm).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có đường cao AI. Từ A kẻ tia Ax vuông góc AC, từ B kẻ tia By song song AC. Gọi M là giao điểm của tia Ax và tia By. Nối M với trung điểm P của AB, đường thẳng MP cắt AC tại Q và đường thẳng BQ cắt AI tại H.
a) Tứ giác AMBQ là hình gì?
b) Chứng minh CH vuông góc AB.
c) Chứng minh tam giác PIQ cân.
Câu 2:
Cho a là góc tù và \(\sin a = \frac{4}{5}\). Tính A = 2sina – cosa.
Câu 3:
Tổng tất cả các giá trị thực của tham số m để hàm số y = 3x3 + 2(m + 1)x2 – 3mx + m – 5 có hai điểm cực trị x1, x2 đồng thời y(x1).y(x2) = 0 là
Câu 4:
Tìm điểm cố định mà đường thẳng y = (m – 2)x + 3 luôn đi qua với mọi giá trị của m.
Câu 5:
Tìm tập hợp tất cả các giá trị của tham số m để hàm số:
\(y = f\left( x \right) = \sqrt {{x^2} - 3mx + 4} \) có tập xác định là D = ℝ.
Câu 6:
Xác định hàm số bậc hai y = 2x2 + bx + c biết đồ thị của nó có đỉnh I(−1; −2).
Câu 7:
Xác định hàm số bậc hai y = ax2 + bx + c biết đồ thị của nó có đỉnh I(1; −1) và đi qua điểm A(2; 0)
về câu hỏi!