Câu hỏi:

03/07/2023 220

Cho hình chóp S.ABCD là hình bình hành tâm O. M, N, P lần lượt là trung điểm của AD, SA, SB.

a) Tìm giao tuyến của (MNP) và (SAB).

b) Tìm giao tuyến của (MNP) và (SBD).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình chóp S.ABCD là hình bình hành tâm O. M, N, P lần lượt là trung điểm (ảnh 1)

a) Xét tam giác SAB có NP là đường trung bình nên NP (SAB)

Mà NP  (MNP).

Do đó NP là giao tuyến của (MNP) và (SAB).

b) Gọi H là trung điểm của BC

Suy ra MH là đường trung bình ở hình bình hành ABCD đi qua tâm O.

Mà (MNP)  (MNPH)

MH ∩ DB = {O}

Mà MH  (MNPH) và DB  (SDB)

Do đó (MNPH) ∩ (SDB) = O

Mặt khác ta có P \subset SB  (SDB)

Vậy PO là giao tuyến của (MNP) và (SBD).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC có đường cao AI. Từ A kẻ tia Ax vuông góc AC, từ B kẻ tia By (ảnh 1)

Vì Ax AC AM AC

mà BM // AC

AM BM

Chứng minh tương tự AQ // BM và BM // AQ (cmt)

Suy ra AMBQ là hình bình hành.

\(\widehat {AMB} = \widehat {MBQ} = \widehat {ABQ} = \widehat {MAQ} = {90^o}\).

Vậy AMBQ là hình chữ nhật.

b) BQ AC (cmt) mà \(BQ \cap AI = H\)

Suy ra H là trực tâm của tam giác ABC.

Do đó: CH AB

c) AMBQ là hình chữ nhật mà \(AB \cap QM = P\)

P là trung điểm AB và P là trung điểm QM

\(\Delta ABI\) vuông tại I có đường trung tuyến IP

\(IP = \frac{1}{2}AB\)

IP = PQ

\(\Delta IPQ\) cân tại P.

Lời giải

Ta có: sin2a + cos2a = 1

cos2a = 1 – sin2a

cos2a = \(1 - {\left( {\frac{4}{5}} \right)^2}\)

\( = 1 - \frac{{16}}{{25}} = \frac{9}{{25}}\)

\( \Rightarrow \left[ \begin{array}{l}{\cos ^2}a = {\left( {\frac{3}{5}} \right)^2}\\{\cos ^2}a = {\left( {\frac{{ - 3}}{5}} \right)^2}\end{array} \right.\)

\( \Leftrightarrow \cos a = \frac{{ \pm 3}}{5}\)

Mà a là góc tù nên cosa < 0

\( \Rightarrow \cos a = - \frac{3}{5}\)

\( \Rightarrow A = 2\sin a - \cos a = 2.\frac{4}{5} - \left( {\frac{{ - 3}}{5}} \right)\)

\( = \frac{8}{5} + \frac{3}{5} = \frac{{11}}{5}\)

Vậy \(A = \frac{{11}}{5}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP