Câu hỏi:

03/07/2023 8,964

Cho các chữ số 0, 1, 2, 3, 4. Hỏi có thể lập được bao nhiêu số tự nhiên có 7 chữ số, trong đó chữ số 4 có mặt đúng 3 lần, các chữ số còn lại có mặt đúng 1 lần?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

• Bước 1: Tìm số lượng tất cả các số được tạo bởi bao gồm trường hợp chữ số 0 ở đầu

Ta có:

Số cách sắp xếp vị trí cho 3 chữ số 4 là: \[C_7^3 = 35\]

Số cách sắp xếp vị trí cho 4 chữa số 0,1,2,3 là: \(P_4^4 = 4! = 24\)

Suy ra có 35.24 = 840 (số)

• Bước 2: Tìm số lượng số có chữ số 0 ở đầu

Ta có:

Số cách sắp xếp vị trí cho 3 chữ số 4 ở 6 vị trí còn lại là: \[C_6^3 = 20\]

Số cách sắp xếp vị trí cho 3 chữa số 1, 2, 3 ở 3 vị trí còn lại là:

\(P_3^3 = 3! = 6\)

Suy ra có: 20.6 = 120 (số)

Vậy số lượng số cần tìm bằng: 

840 – 120 = 720 (số)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi số tự nhiên có 5 chữ số \(\overline {abcde} \;\left( {a \ne b \ne c \ne d \ne e;\;a \ne 0} \right)\)

+) Trường hợp với a là số bất kì kể cả 0

Xếp 3 số 1, 2, 3 vào 3 trong 5 vị trí và sắp xếp có \(A_5^3\) (cách)

Xếp 2 số trong 7 số còn lại vào 2 vị trí còn lại và sắp xếp có \(A_7^2\) (cách)

Suy ra có \(A_5^3\,.\,A_7^2\) số

+) Trường hợp a = 0

Chọn a có 1 cách

Xếp 3 số 1, 2, 3 vào 3 trong 4 vị trí và sắp xếp có \(A_4^3\) (cách)

Xếp 1 số còn lại trong 6 số vào 1 vị trí còn lại có \(C_6^1\) (cách)

Suy ra có \(A_4^3\,.\,C_7^1\) (cách)

Vậy có: \(A_5^3\,.\,A_7^2 - A_4^3\,.\,C_7^1 = 2376\) số thỏa mãn yêu cầu bài toán.

Lời giải

a) Gọi G là trọng tâm của tam giác ABC có tọa độ G(xG; yG).

Ta có: \(\left\{ \begin{array}{l}{x_G} = \frac{{ - 4 + 2 + 2}}{3} = 0\\{y_G} = \frac{{1 + 4 - 2}}{3} = 1\end{array} \right.\).

Vậy tọa độ trọng tâm G của tam giác ABC là G(0; 1).

b) Gỉả sử điểm D có tọa độ là D(xD; yD)

Vì C là trọng tâm của tam giác ABD nên ta có:

\(\left\{ \begin{array}{l}\frac{{ - 4 + 2 + {x_D}}}{3} = 2\\\frac{{1 + 4 + {y_D}}}{3} = - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 4 + 2 + {x_D} = 6\\1 + 4 + {y_D} = - 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_D} = 8\\{y_D} = - 11\end{array} \right.\)

Vậy điểm D có tọa độ là D(8; −11).

c) Gỉả sử điểm D có tọa độ là E(xE; yE).

Để tứ giác ABCE là hình bình hành thì \(\overrightarrow {AB} = \overrightarrow {EC} \)

\[ \Leftrightarrow \left( {2 + 4;\;4 - 1} \right) = \left( {2 - {x_E};\; - 2 - {y_E}} \right)\]

\( \Leftrightarrow \left\{ \begin{array}{l}2 - {x_E} = 6\\ - 2 - {y_E} = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_E} = - 4\\{y_E} = - 5\end{array} \right.\)

Vậy điểm E có tọa độ là E(−4; −5).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP