Câu hỏi:
04/07/2023 2,380Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Ta có BB’ // (ACC’A’) và AC’ ⊂ (ACC’A’).
Suy ra d(BB’, AC’) = d(BB’, (ACC’A’)) = d(B, (ACC’A’)).
Gọi J là trung điểm AC.
Khi đó IJ là đường trung bình của tam giác ABC.
Suy ra IJ // AB và \(IJ = \frac{{AB}}{2} = \frac{a}{2}\).
Mà AB ⊥ AC.
Do đó IJ ⊥ AC.
Mà A’I ⊥ AC (do A’I ⊥ (ABC)).
Suy ra AC ⊥ (A’IJ).
Trong (A’IJ): kẻ IK ⊥ A’J tại K.
Khi đó AC ⊥ IK.
Mà IK ⊥ A’J.
Do đó IK ⊥ (ACC’A’).
Vì vậy d(I, (ACC’A’) = IK.
Tam giác ABC vuông tại A có AI là đường trung tuyến.
Suy ra \(AI = IB = IC = \frac{{BC}}{2} = \frac{{\sqrt {A{B^2} + A{C^2}} }}{2} = a\).
Tam giác AA’I vuông tại I: \(A'I = \sqrt {A{{A'}^2} - A{I^2}} = a\sqrt 3 \).
Tam giác A’IJ vuông tại I có IK là đường cao: \[\frac{1}{{I{K^2}}} = \frac{1}{{A'{I^2}}} + \frac{1}{{I{J^2}}} = \frac{{13}}{{3{a^2}}}\].
Suy ra \(IK = \frac{{a\sqrt {39} }}{{13}}\).
Do đó \(d\left( {B,\left( {ACC'A'} \right)} \right) = \frac{{CB}}{{CI}}.d\left( {I,\left( {ACC'A'} \right)} \right) = 2.IK = \frac{{2a\sqrt {39} }}{{13}}\).
Vậy khoảng cách giữa BB’ và AC’ bằng \(\frac{{2a\sqrt {39} }}{{13}}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Câu 7:
về câu hỏi!