Câu hỏi:

04/07/2023 1,783

Cho tam giác ABC có AB = AC. Trên hai cạnh AB và AC lần lượt lấy hai điểm M và N sao cho AM = AN. Gọi E và D lần lượt là trung điểm của MN và BC. Chứng minh ba điểm A, E, D thẳng hàng.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

Xét tam giác AMN, có: AM = AN.

Suy ra tam giác AMN cân tại A.

Do đó đường trung tuyến AE của tam giác AMN cũng là phân giác của \(\widehat {MAN}\)   (1)

Xét tam giác ABC, có: AB = AC.

Suy ra tam giác ABC cân tại A.

Do đó đường trung tuyến AD của tam giác ABC cũng là phân giác của \(\widehat {BAC}\)   (2)

Từ (1), (2), suy ra D, E cùng thuộc tia phân giác của \(\widehat A\).

Vậy ba điểm A, E, D thẳng hàng.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hai tập hợp A = (m – 1; 5], B = (3; 2020 – 5m) và A, B khác rỗng. Có bao nhiêu giá trị nguyên của m để A \ B = ?

Xem đáp án » 04/07/2023 27,399

Câu 2:

Cách xác định cạnh kề, cạnh đối, cạnh huyền trong tam giác vuông.

Xem đáp án » 04/07/2023 25,803

Câu 3:

Trong mặt phẳng tọa độ Oxy, cho hai điểm B(–2; 3), C(3; 1). Tìm tọa độ điểm A sao cho tam giác ABC vuông cân tại A.

Xem đáp án » 04/07/2023 16,160

Câu 4:

Cho hàm số y = ax2 + bx + c có đồ thị như hình bên.

Media VietJack

Khẳng định nào sau đây đúng?

Xem đáp án » 04/07/2023 11,606

Câu 5:

Cho góc nhọn xOy. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Ax lấy điểm C, trên tia By lấy điểm D sao cho AC = BD.

a) Chứng minh AD = BC.

b) Gọi E là giao điểm của AD và BC. Chứng minh ∆EAC = ∆EBD.

c) Chứng minh OE là phân giác của \(\widehat {xOy}\).

Xem đáp án » 04/07/2023 11,095

Câu 6:

Cho hàm số y = mx + 3. Tìm m để khoảng cách từ gốc tọa độ đến đường thẳng d là lớn nhất.

Xem đáp án » 04/07/2023 8,444

Câu 7:

Tìm tất cả các giá trị của m để hàm số y = –4x2 + 4mx – m2 + 2 nghịch biến trên (–2; +∞).

Xem đáp án » 04/07/2023 7,864
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua