Cho hàm số y = (m – 1)x + m (1) (với m là tham số, m ≠ 0).
a) Tìm m để đồ thị hàm số (1) đi qua điểm M(1; 3).
b) Tìm m để đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 4. Vẽ đồ thị hàm số với m tìm được.
Cho hàm số y = (m – 1)x + m (1) (với m là tham số, m ≠ 0).
a) Tìm m để đồ thị hàm số (1) đi qua điểm M(1; 3).
b) Tìm m để đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 4. Vẽ đồ thị hàm số với m tìm được.
Quảng cáo
Trả lời:

Lời giải
a) Vì đồ thị hàm số (1) đi qua điểm M(1; 3) nên 3 = (m – 1).1 + m.
⇔ 3 = m – 1 + m.
⇔ m = 1.
Vậy m = 1 thỏa mãn yêu cầu bài toán.
b) Vì đường thẳng cắt trục tung tại điểm có tung độ bằng 4 nên 4 = (m – 1).0 + m.
⇔ m = 4.
Vậy m = 4 thỏa mãn yêu cầu bài toán.
Với m = 4, ta có y = 3x + 4.
Bảng giá trị:
x |
–2 |
–1 |
0 |
y |
–2 |
1 |
4 |
Đồ thị hàm số y = 3x + 4:
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Giả sử ta có tam giác vuông như hình vẽ.
Với góc α < 90°, ta có b là cạnh kề, a là cạnh đối, h là cạnh huyền.
Với góc β < 90°, ta có a là cạnh kề, b là cạnh đối, h là cạnh huyền.
Tóm lại:
Cạnh huyền là cạnh đối diện góc vuông.
Cạnh kề là cạnh góc vuông kề với góc đó.
Cạnh đối là cạnh góc vuông đối diện với góc đó.
Câu 2
Lời giải
Lời giải
Đáp án đúng là: D
Vì A, B khác rỗng nên ta có \(\left\{ \begin{array}{l}m - 1 < 5\\3 < 2020 - 5m\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}m < 6\\5m < 2017\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}m < 6\\m < \frac{{2017}}{5}\end{array} \right.\)
⇔ m < 6.
Để A \ B = ∅ thì A ⊂ B.
\( \Leftrightarrow \left\{ \begin{array}{l}3 \le m - 1\\5 < 2020 - 5m\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}m \ge 4\\m < 403\end{array} \right.\)
⇔ 4 ≤ m < 403.
So với điều kiện m < 6, ta nhận 4 ≤ m < 6.
Mà m ∈ ℤ nên m ∈ {4; 5}.
Vậy có 2 giá trị nguyên của m thỏa mãn yêu cầu bài toán.
Do đó ta chọn phương án D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.