Câu hỏi:
04/07/2023 1,671Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Đáp án đúng là: D
Gọi A, B lần lượt là giao điểm của đường thẳng d với các trục Oy, Ox.
Với x = 0, ta có: y = –m + 1. Suy ra tọa độ A(0; –m + 1).
Với y = 0, ta có: \(x = \frac{{m - 1}}{m}\). Suy ra tọa độ \(B\left( {\frac{{m - 1}}{m};0} \right)\).
Kẻ OH vuông góc với AB.
Khi đó khoảng cách từ gốc tọa độ O đến đường thẳng d là lớn nhất.
⇔ OH lớn nhất.
Ta có OA = |–m + 1|, \[OB = \left| {\frac{{m - 1}}{m}} \right|\].
Tam giác OAB vuông tại O có OH là đường cao:
\(\frac{1}{{O{H^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}} = \frac{1}{{{{\left( {m - 1} \right)}^2}}} + \frac{{{m^2}}}{{{{\left( {m - 1} \right)}^2}}} = \frac{{{m^2} + 1}}{{{{\left( {m - 1} \right)}^2}}}\).
Suy ra \(O{H^2} = \frac{{{{\left( {m - 1} \right)}^2}}}{{{m^2} + 1}}\).
Do đó \(OH = \frac{{\left| {m - 1} \right|}}{{\sqrt {{m^2} + 1} }}\).
Áp dụng bất đẳng thức Bunhiaxcopki, ta có: \(\frac{{\left| {m - 1} \right|}}{{\sqrt {{m^2} + 1} }} \le \sqrt {2.\frac{{{m^2} + 1}}{{{m^2} + 1}}} = \sqrt 2 \).
Dấu “=” xảy ra ⇔ m = –1.
Vậy m = –1 thỏa mãn yêu cầu bài toán.
Do đó ta chọn phương án D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Câu 7:
về câu hỏi!