Câu hỏi:

04/07/2023 885

Cho phương trình mx2 – (2m + 1)x + (m + 1) = 0    (1)

a) Giải phương trình (1) với \(m = \frac{{ - 3}}{5}\).

b) Chứng minh rằng phương trình (1) luông có nghiệm với mọi giá trị của m.

c) Tìm các giá trị của m để phương trình (1) có nghiệm lớn hơn 2.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

a) Thế \(m = \frac{{ - 3}}{5}\) vào phương trình (1) ta được: \(\frac{{ - 3}}{5}{x^2} + \frac{1}{5}x + \frac{2}{5} = 0\).

–3x2 + x + 2 = 0.

(3x + 2)(x – 1) = 0.

\( \Leftrightarrow \left[ \begin{array}{l}3x + 2 = 0\\x - 1 = 0\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}x = - \frac{2}{3}\\x = 1\end{array} \right.\)

Vậy với \(m = \frac{{ - 3}}{5}\) thì tập nghiệm của phương trình đã cho là \(S = \left\{ { - \frac{2}{3};1} \right\}\).

b) Ta có ∆ = (2m + 1)2 – 4m(m + 1) = 4m2 + 4m + 1 – 4m2 – 4m = 1 > 0, m.

Vậy phương trình (1) luôn có nghiệm, với mọi giá trị của m.

c) Hai nghiệm của phương trình (1) là: \(\left[ \begin{array}{l}{x_1} = \frac{{2m + 1 + 1}}{{2m}} = \frac{{m + 1}}{m}\\{x_2} = \frac{{2m + 1 - 1}}{{2m}} = 1\end{array} \right.\)

Vì x2 = 1 < 2 nên để phương trình (1) có nghiệm lớn hơn 2 thì x1 > 2.

Tức là, \(\frac{{m + 1}}{m} > 2\).

\( \Leftrightarrow \frac{{ - m + 1}}{m} > 0\).

\( \Leftrightarrow \left\{ \begin{array}{l} - m + 1 > 0\\m > 0\end{array} \right.\) hoặc \(\left\{ \begin{array}{l} - m + 1 < 0\\m < 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}m < 1\\m > 0\end{array} \right.\) hoặc \(\left\{ \begin{array}{l}m > 1\\m < 0\end{array} \right.\) (vô lí).

0 < m < 1.

Vậy 0 < m < 1 thỏa mãn yêu cầu bài toán.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hai tập hợp A = (m – 1; 5], B = (3; 2020 – 5m) và A, B khác rỗng. Có bao nhiêu giá trị nguyên của m để A \ B = ?

Xem đáp án » 04/07/2023 23,411

Câu 2:

Cách xác định cạnh kề, cạnh đối, cạnh huyền trong tam giác vuông.

Xem đáp án » 04/07/2023 11,839

Câu 3:

Cho hàm số y = mx + 3. Tìm m để khoảng cách từ gốc tọa độ đến đường thẳng d là lớn nhất.

Xem đáp án » 04/07/2023 6,132

Câu 4:

Tìm tất cả các giá trị của m để hàm số y = –4x2 + 4mx – m2 + 2 nghịch biến trên (–2; +∞).

Xem đáp án » 04/07/2023 4,961

Câu 5:

Cho đường thẳng d có phương trình y = (m – 1)x + 2. Tìm m để khoảng cách từ gốc tọa độ O đến đường thẳng d là lớn nhất.

Xem đáp án » 04/07/2023 4,224

Câu 6:

Trong mặt phẳng tọa độ Oxy, cho hai điểm B(–2; 3), C(3; 1). Tìm tọa độ điểm A sao cho tam giác ABC vuông cân tại A.

Xem đáp án » 04/07/2023 3,700

Câu 7:

Tính diện tích hình thang ABCD, biết AB // CD, \(\widehat D = 90^\circ \), \(\widehat C = 38^\circ \), AB = 3,5 cm, AD = 3,1 cm.

Xem đáp án » 04/07/2023 3,692

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store